Advertisement

Formalizing and Implementing Types in MSVL

  • Xiaobing Wang
  • Zhenhua DuanEmail author
  • Liang Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8332)

Abstract

This paper investigates techniques for formalizing and implementing types in the temporal logic programming language MSVL, which is an executable subset of Projection Temporal Logic. To this end, the data domain of MSVL is extended to include typed values, and then typed functions and predicates concerning the extended data domain are defined. Based on these definitions, the statement for type declaration of program variables is formalized. The implementation mechanisms of the type declaration statement in the MSVL interpreter are also discussed, which is based on the notion of normal form of MSVL programs. To illustrate how to program with types, an example of in-place reversing an integer list is given.

Keywords

Type Temporal logic programming MSVL Projection Temporal Logic 

References

  1. 1.
    Allen Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Computer Science, pp. 995–1072. Elsevier, Amsterdam (1995)Google Scholar
  2. 2.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  3. 3.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  4. 4.
    Duan, Z., Maciej, K.: A framed temporal logic programming language. J. Comput. Sci. Technol. 19, 341–351 (2004)CrossRefGoogle Scholar
  5. 5.
    Duan, Z., Tian, C.: A unified model checking approach with projection temporal logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with star. Theor. Comput. Sci. 412, 1729–1744 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cau, A., Moszkowski, B., Zedan, H.: Itl and tempura home page on the web. http://www.cse.dmu.ac.uk/STRL/ITL/ (2013)
  8. 8.
    Tang, Z.: Temporal Logic Program Designing and Engineering. Science Press, Beijing (1999)Google Scholar
  9. 9.
  10. 10.
    Fisher, M.: MetateM: the story so far. In: Bordini, R.H., Dastani, M.M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 3–22. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Zhou, S., Zedan, H., Cau, A.: Run-time analysis of time-critical systems. J. Syst. Archit. 51, 331–345 (2005)CrossRefGoogle Scholar
  12. 12.
    Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Comput. Program. 70, 31–61 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing (2006)Google Scholar
  14. 14.
    Yang, X., Duan, Z.: Operational semantics of framed tempura. J. Logic Algebraic Program. 78, 22–51 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Duan, Z., Wang, X.: Implementing pointer in temporal logic programming languages. In: Proceedings of SBMF 2006, pp. 171–184 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Computing Theory and Technology and ISN LaboratoryXidian UniversityXianPeople’s Republic of China

Personalised recommendations