Integrating Separation Logic with PPTL

  • Xu Lu
  • Zhenhua Duan
  • Cong Tian
  • Hongjin Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8332)


In this paper, we integrate Separation Logic with propositional Projection Temporal Logic (PPTL) to obtain a two-dimensional logic, named \(\text {PPTL}^{\tiny \text{ SL }}\). The spatial dimension is realized by a decidable fragment of separation logic which can be used to describe linked lists, and the temporal dimension is expressed by PPTL. Furthermore, we prove that any \(\text {PPTL}^{\tiny \text{ SL }}\) formula can be transformed into its normal form. Example are given to show how to specify temporal heap properties by this hybrid logic.


Temporal logic Separation logic Heap Many-dimensional logic 


  1. 1.
    Burstall, R.M.: Some techniques for proving correctness of programs which alter data structures. J. Mach. Intell. 7, 23–50 (1972)zbMATHGoogle Scholar
  2. 2.
    Hoare, C.A.R., He, J.: A trace model for pointers and objects. In: Guerraoui, R. (ed.) ECCOP 1999. LNCS, vol. 1628, pp. 1–17. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In: PLDI, pp. 296–310. ACM Press, New York (1990)Google Scholar
  4. 4.
    Wilhelm, R., Sagiv, S., Reps, T.W.: Shape analysis. In: Watt, D.A. (ed.) CC/ETAPS 2000. LNCS, vol. 1781, pp. 1–17. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. J. ACM Trans. Program. Lang. Syst. 24, 217–298 (2002)CrossRefGoogle Scholar
  6. 6.
    Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: 17th IEEE Symp. on Logic in Comput. Sci., pp. 55–74. IEEE Press, New York (2002)Google Scholar
  8. 8.
    Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation logic. In: Yi, K. (ed.) ALAPS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 287–302. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Calcagno, C., Gardner, P., Hague, M.: From separation logic to first-order logic. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 395–409. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Moszkowski, B.C.: Reasoning about digital circuits. Ph.D. thesis, Stanford University (1983)Google Scholar
  12. 12.
    Duan, Z.: An extended interval temporal logic and a framing technique for temporal logic programming. Ph.D. thesis, University of Newcastle Upon Tyne (1996)Google Scholar
  13. 13.
    Duan, Z., Koutny, M.: A framed temporal logic programming language. J. Comput. Sci. Technol. 19, 341–351 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. J. Sci. Comput. Program. 70, 31–61 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Yahav, E., Reps, T., Sagiv, M., Wilhelm, R.: Verifying temporal heap properties specified via evolution logic. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 204–222. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Distefano, D., Katoen, J.-P., Rensink, A.: Safety and liveness in concurrent pointer programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 280–312. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    del Mar Gallardo, M., Merino, P., Sanán, D.: Model checking dynamic memory allocation in operating systems. J. Autom. Reason. 42, 229–264 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Brochenin, R., Demri, S., Lozes, E.: Reasoning about sequences of memory states. J. Ann. Pure Appl. Logic 161, 305–323 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for a spatial assertion language for data structures. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Duan, Z., Tian, C.: A unified model checking approach with projection temporal logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186. Springer, Heidelberg (2008)Google Scholar
  22. 22.
    Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection temporal logic with infinite models. J. Acta Inform. 45, 43–78 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Tian, C., Duan, Z.: Complexity of propositional projection temporal logic with star. J. Math. Struct. Comput. Sci. 19, 73–100 (2009)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.ICTT and ISN LabXidian UniversityXi’anPeople’s Republic of China
  2. 2.Beijing Institute of Control EngineeringHaidianChina

Personalised recommendations