Advertisement

On the Relation between Redactable and Sanitizable Signature Schemes

  • Hermann de Meer
  • Henrich C. Pöhls
  • Joachim Posegga
  • Kai Samelin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8364)

Abstract

Malleable signature schemes (\(\mathcal MSS\)) enable a third party to alter signed data in a controlled way, maintaining a valid signature after an authorized change. Most well studied cryptographic constructions are (1) redactable signatures (\(\mathcal RSS\)), and (2) sanitizable signatures (\(\mathcal SSS\)). \(\mathcal RSS\)s allow the removal of blocks from a signed document, while \(\mathcal SSS\)s allow changing blocks to arbitrary strings. We rigorously prove that \(\mathcal RSS\)s are less expressive than \(\mathcal SSS\)s: no unforgeable \(\mathcal RSS\) can be transformed into an \(\mathcal SSS\). For the opposite direction we give a black-box transformation of a single \(\mathcal SSS\), with tightened security, into an \(\mathcal RSS\).

Keywords

Signature Scheme Security Property Security Parameter Valid Signature Standard Privacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. Cryptology ePrint Archive, Report 2011/096 (2011), http://eprint.iacr.org
  2. 2.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Brzuska, C., et al.: Redactable Signatures for Tree-Structured Data: Definitions and Constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Sanitizable signatures: How to partially delegate control for authenticated data. In: Proc. of BIOSIG. LNI, vol. 155, pp. 117–128. GI (2009)Google Scholar
  10. 10.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of Sanitizable Signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 444–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Brzuska, C., Pöhls, H.C., Samelin, K.: Non-Interactive Public Accountability for Sanitizable Signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI 2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and Perfectly Unlinkable Sanitizable Signatures without Group Signatures. In: Agudo, I. (ed.) EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several signers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Cavoukian, A., Polonetsky, J., Wolf, C.: Smartprivacy for the smart grid: embedding privacy into the design of electricity conservation. Identity in the Information Society 3(2), 275–294 (2010)CrossRefGoogle Scholar
  17. 17.
    Chang, E.-C., Lim, C.L., Xu, J.: Short Redactable Signatures Using Random Trees. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Scope of security properties of sanitizable signatures revisited. In: ARES, pp. 188–197 (2013)Google Scholar
  19. 19.
    Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17, 281–308 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Haber, S., Hatano, Y., Honda, Y., Horne, W.G., Miyazaki, K., Sander, T., Tezoku, S., Yao, D.: Efficient signature schemes supporting redaction, pseudonymization, and data deidentification. In: ASIACCS, pp. 353–362 (2008)Google Scholar
  23. 23.
    Hanser, C., Slamanig, D.: Blank digital signatures. In: AsiaCCS, pp. 95–106. ACM (2013)Google Scholar
  24. 24.
    Izu, T., Izumi, M., Kunihiro, N., Ohta, K.: Yet another sanitizable and deletable signatures. In: AINA, pp. 574–579 (2011)Google Scholar
  25. 25.
    Izu, T., Kunihiro, N., Ohta, K., Sano, M., Takenaka, M.: Sanitizable and deletable signature. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 130–144. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Klonowski, M., Lauks, A.: Extended Sanitizable Signatures. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Kundu, A., Bertino, E.: Structural Signatures for Tree Data Structures. In: Proc. of PVLDB 2008, New Zealand. ACM (2008)Google Scholar
  29. 29.
    Kundu, A., Bertino, E.: How to authenticate graphs without leaking. In: EDBT, pp. 609–620 (2010)Google Scholar
  30. 30.
    Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Intl. J. of Inf. Sec., 1–28 (2013)Google Scholar
  31. 31.
    Lim, S., Lee, E., Park, C.-M.: A short redactable signature scheme using pairing. Sec. and Comm. Netw. 5(5), 523–534 (2012)CrossRefGoogle Scholar
  32. 32.
    Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme based on bilinear maps. In: ASIACCS 2006, pp. 343–354. ACM, New York (2006)Google Scholar
  33. 33.
    Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S., Imai, H.: Digitally Signed Document Sanitizing Scheme with Disclosure Condition Control. IEICE Transactions 88-A(1), 239–246 (2005)CrossRefGoogle Scholar
  34. 34.
    Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H.: Digital documents sanitizing problem. Technical report, IEICE (2003)Google Scholar
  35. 35.
    Pöhls, H.C., Peters, S., Samelin, K., Posegga, J., de Meer, H.: Malleable signatures for resource constrained platforms. In: Cavallaro, L., Gollmann, D. (eds.) WISTP 2013. LNCS, vol. 7886, pp. 18–33. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  36. 36.
    Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable Signatures in XML Signature - Performance, Mixing Properties, and Revisiting the Property of Transparency. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  37. 37.
    Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: On Structural Signatures for Tree Data Structures. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 171–187. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  38. 38.
    Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable signatures for independent removal of structure and content. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  39. 39.
    Slamanig, D., Rass, S.: Generalizations and extensions of redactable signatures with applications to electronic healthcare. In: De Decker, B., Schaumüller-Bichl, I. (eds.) CMS 2010. LNCS, vol. 6109, pp. 201–213. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  40. 40.
    Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-C. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  41. 41.
    Yuen, T.H., Susilo, W., Liu, J.K., Mu, Y.: Sanitizable signatures revisited. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 80–97. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  42. 42.
    Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hermann de Meer
    • 1
    • 3
  • Henrich C. Pöhls
    • 2
    • 3
  • Joachim Posegga
    • 2
    • 3
  • Kai Samelin
    • 4
  1. 1.Computer Networks and Computer CommunicationUniversity of PassauGermany
  2. 2.IT-SecurityUniversity of PassauGermany
  3. 3.Institute of IT-Security and Security Law (ISL)University of PassauGermany
  4. 4.Engineering Cryptographic Protocols Group & CASEDTU DarmstadtGermany

Personalised recommendations