Advertisement

Ion-Based Liquid Crystals: From Well-Defined Self-Organized Nanostructures to Applications

  • Hiromitsu Maeda
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Recent progress in the chemistry of ion-based liquid crystals and related materials based on anion-responsive π-conjugated molecules is summarized. Thermotropic liquid crystals with highly ordered positively and negatively charged species are promising materials as organic semiconductors that show fascinating properties compared to those of electronically neutral species. The achievement of ion-based liquid crystals requires the preparation of appropriate charged building subunits, in particular, planar anionic species, which can be obtained by the complexation of electronically neutral anion-responsive π-conjugated molecules. The author’s group has fabricated a variety of ion-based organized structures as liquid crystals comprising pyrrole-based anion receptor molecules. The charge-carrier transporting properties exhibited by some of the obtained materials highlight their potential utility in future applications.

Keywords

Liquid Crystal Columnar Structure Polarize Optical Microscopy Anionic Component Anion Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The contributions reported herein have been supported by PRESTO, Japan Science and Technology Agency (JST) (“Structure Control and Function”, 2007–2011), Grants-in-Aid for Young Scientists (B) (No. 21750155) and (A) (No. 23685032) and Scientific Research in a Priority Area “Super-Hierarchical Structures” (No. 18039038, 19022036) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), the matching fund subsidies for private universities from the MEXT, 2003--2008 and 2009--2014, and the Ritsumeikan Global Innovation Research Organization (R-GIRO) project, 2008--2013. The author thanks all the authors and the collaborators described in the acknowledgement in the previous publications, in particular, Prof. Atsuhiro Osuka and his group members for single-crystal X-ray analysis, Dr. Takashi Nakanishi, NIMS, for his kind help with various analyses of molecular assemblies, Prof. Shu Seki, Osaka University, and his group members for electrical conductivity measurements, Prof. Hitoshi Tamiaki, Ritsumeikan University, for various measurements, and all the group members, especially, Dr. Yohei Haketa and Dr. Bin Dong, for their contributions on ion-based materials.

References

  1. 1.
    G. Tsoucaris (ed.), Current Challenges on Large Supramolecular Assemblies, NATO Science Series (Kluwer, South Holland, 1999)Google Scholar
  2. 2.
    A. Ciferri (ed.), Supramolecular Polymers (Marcel Dekker, New York, 2000)Google Scholar
  3. 3.
    F. Würthner (ed.), Supramolecular Dye Chemistry, Topics in Current Chemistry, vol. 258 (Springer, Berlin, 2005), pp. 1–324Google Scholar
  4. 4.
    J.L. Atwood, J.W. Steed (eds.), Organic Nanostructures (Wiley, Weinheim, 2007)Google Scholar
  5. 5.
    P.A. Gale, J.W. Steed (eds.), Supramolecular Chemistry: From Molecules to Nanomaterials (Jon Wiley & Sons, Chichester, 2012)Google Scholar
  6. 6.
    W. Hamley, Introduction to Soft Matter—Polymers, Colloids, Amphiphiles and Liquid Crystals (John Wiley & Sons, West Sussex, 2000)Google Scholar
  7. 7.
    I. Dierking, Textures of Liquid Crystals (Wiley, Weinheim, 2003)Google Scholar
  8. 8.
    T. Kato, N. Mizoshita, K. Kishimoto, Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2006)CrossRefGoogle Scholar
  9. 9.
    T. Kato (ed.), Liquid Crystalline Functional Assemblies and Their Supramolecular Structures, Structure and Bonding, vol. 128 (Springer, Berlin, 2008), pp. 1–237Google Scholar
  10. 10.
    T. Kato, T. Yasuda, Y. Kamikawa, M. Yoshio, Self-assembly of functional columnar liquid crystals. Chem. Commun. 12, 729–739 (2009)Google Scholar
  11. 11.
    B.R. Kaafarani, Discotic liquid crystals for opto-electronic applications. Chem. Mater. 23, 378–396 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Kumar, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers; The Liquid Crystals Book Series (CRC Press, Boca Raton, 2011)Google Scholar
  13. 13.
    T. Welton, Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)CrossRefGoogle Scholar
  14. 14.
    P. Wasserscheid, W. Keim, Ionic liquids—new solutions for transition metal catalysis. Angew. Chem. Int. Ed. 39, 3772–3789 (2000)CrossRefGoogle Scholar
  15. 15.
    H. Ohno, Functional design of ionic liquids. Bull. Chem. Soc. Jpn. 79, 1665–1680 (2006)CrossRefGoogle Scholar
  16. 16.
    M.A.P. Martins, C.P. Frizzo, D.N. Moreira, N. Zanatta, H.G. Bonacorso, Ionic liquids in heterocyclic synthesis. Chem. Rev. 108, 2015–2050 (2008)CrossRefGoogle Scholar
  17. 17.
    P. Hapiot, C. Lagrost, Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 108, 2238–2264 (2008)CrossRefGoogle Scholar
  18. 18.
    R. Giernoth, Task-specific ionic liquids. Angew. Chem. Int. Ed. 49, 2834–2839 (2010)CrossRefGoogle Scholar
  19. 19.
    K. Binnemans, Ionic liquid crystals. Chem. Rev. 105, 4148–4204 (2005)CrossRefGoogle Scholar
  20. 20.
    T.L. Greaves, F.J. Drummond, Ionic liquids as amphiphile self-assembly media. Chem. Soc. Rev. 37, 1709–1726 (2008)CrossRefGoogle Scholar
  21. 21.
    K.V. Axenov, S. Laschat, Thermotropic ionic liquid crystals. Materials 4, 206–259 (2011)CrossRefADSGoogle Scholar
  22. 22.
    A. Bianchi, K. Bowman-James, E. García-España (eds.), Supramolecular Chemistry of Anion (Wiley, New York, 1997)Google Scholar
  23. 23.
    R.P. Singh, B.A. Moyer (eds.), Fundamentals and Applications of Anion Separation (Kluwer, New York, 2004)Google Scholar
  24. 24.
    I. Stibor (ed.), Anion Sensing, Topics in Current Chemistry, vol. 255 (Springer, Berlin, 2005), pp. 1–238Google Scholar
  25. 25.
    J.L. Sessler, P.A. Gale, W.-S. Cho, Anion Receptor Chemistry (RSC, UK, 2006)Google Scholar
  26. 26.
    R. Vilar (ed.), Recognition of Anions, Structure and Bonding, vol. 129 (Springer, Berlin, 2008), pp. 1–252Google Scholar
  27. 27.
    P.A. Gale, W. Dehaen (eds.), Anion Recognition by Supramolecular Chemistry, Topics in Heterocyclic Chemistry, vol. 24 (Springer, Berlin, 2010), pp. 1–370Google Scholar
  28. 28.
    K. Bowman-James, A. Bianchi, E. García-España (eds.), Anion Coordination Chemistry (Wiley, Weinheim, 2011)Google Scholar
  29. 29.
    B. Dong, H. Maeda, Ion-based materials comprising planar charged species. Chem. Commun. 49, 4085–4099 (2013)CrossRefGoogle Scholar
  30. 30.
    H. Maeda, Y. Bando, Recent progress in research on anion-responsive pyrrole-based π-conjugated acyclic molecules. Chem. Commun. 49, 4100–4113 (2013)CrossRefGoogle Scholar
  31. 31.
    H. Maeda. Supramolecular chemistry of pyrrole-based π-conjugated molecules. Bull. Chem. Soc. Jpn. 86, 1359--1399 (2013)Google Scholar
  32. 32.
    H. Maeda, Y. Kusunose, Dipyrrolyldiketone difluoroboron complexes: novel anion sensors with C-H···X interactions. Chem. Eur. J. 11, 5661–5666 (2005)CrossRefGoogle Scholar
  33. 33.
    H. Maeda, Y. Haketa, T. Nakanishi, Aryl-substituted C3-bridged oligopyrroles as anion receptors for formation of supramolecular organogels. J. Am. Chem. Soc. 129, 13661–13674 (2007)CrossRefGoogle Scholar
  34. 34.
    H. Maeda, Y. Ito, Y. Haketa, N. Eifuku, E. Lee, M. Lee, T. Hashishin, K. Kaneko, Solvent-assisted organized structures based on amphiphilic anion-responsive π-conjugated systems. Chem. Eur. J. 15, 3706–3719 (2009)CrossRefGoogle Scholar
  35. 35.
    H. Maeda, Y. Terashima, Y. Haketa, A. Asano, Y. Honsho, S. Seki, M. Shimizu, H. Mukai, K. Ohta, Discotic columnar mesophases derived from ‘rod-like’ π-conjugated anion-responsive acyclic oligopyrroles. Chem. Commun. 46, 4559–4561 (2010)CrossRefGoogle Scholar
  36. 36.
    H. Maeda, Y. Bando, Y. Haketa, Y. Honsho, S. Seki, H. Nakajima, N. Tohnai, Electronic and optical properties in the solid-state molecular assemblies of anion-responsive pyrrole-based π-conjugated systems. Chem. Eur. J. 16, 10994–11002 (2010)CrossRefGoogle Scholar
  37. 37.
    Y. Haketa, S. Sasaki, N. Ohta, H. Masunaga, H. Ogawa, N. Mizuno, F. Araoka, H. Takezoe, H. Maeda, Oriented salts: dimension-controlled charge-by-charge assemblies from planar receptor–anion complexes. Angew. Chem. Int. Ed. 49, 10079–10083 (2010)CrossRefGoogle Scholar
  38. 38.
    H. Maeda, K. Naritani, Y. Honsho, S. Seki, Anion modules: building blocks of supramolecular assemblies by combination with π-conjugated anion receptors. J. Am. Chem. Soc. 133, 8243–8896 (2011)CrossRefGoogle Scholar
  39. 39.
    Y. Haketa, S. Sakamoto, K. Chigusa, T. Nakanishi, H. Maeda, Synthesis, crystal structures, and supramolecular assemblies of pyrrole-based anion receptors bearing modified pyrrole β-substituents. J. Org. Chem. 76, 5177–5184 (2011)CrossRefGoogle Scholar
  40. 40.
    B. Dong, Y. Terashima, Y. Haketa, H. Maeda, Charge-based assemblies comprising planar receptor–anion complexes with bulky alkylammonium cations. Chem. Eur. J. 18, 3460–3463 (2012)CrossRefGoogle Scholar
  41. 41.
    Y. Bando, S. Sakamoto, I. Yamada, Y. Haketa, H. Maeda, Charge-based and charge-free molecular assemblies comprising π-extended derivatives of anion-responsive acyclic oligopyrroles. Chem. Commun. 48, 2301–2303 (2012)CrossRefGoogle Scholar
  42. 42.
    Y. Haketa, Y. Honsho, S. Seki, H. Maeda, Ion materials comprising planar charged species. Chem. Eur. J. 18, 7016–7020 (2012)CrossRefGoogle Scholar
  43. 43.
    B. Dong, T. Sakurai, Y. Honsho, S. Seki, H. Maeda, Cation modules as building blocks forming supramolecular assemblies with planar receptor–anion complexes. J. Am. Chem. Soc. 135, 1284–1287 (2013)CrossRefGoogle Scholar
  44. 44.
    Y. Terashima, M. Takayama, K. Isozaki, H. Maeda, Ion-based materials of boron-modified dipyrrolyldiketones as anion receptors. Chem. Commun. 49, 2506–2508 (2013)CrossRefGoogle Scholar
  45. 45.
    Y. Bando, T. Sakurai, S. Seki, H. Maeda, Corannulene-fused anion-responsive π-conjugated molecules that form self-assemblies with unique electronic properties. Chem. Asian J. 8, 2088–2095 (2013)CrossRefGoogle Scholar
  46. 46.
    Y. Terashima, T. Sakurai, Y. Bando, S. Seki, H. Maeda, Assembled structures of anion-responsive π-systems tunable by alkyl/perfluoroalkyl segments in peripheral side chains. Chem. Mater. 25, 2656–2662 (2013)CrossRefGoogle Scholar
  47. 47.
    H. Maeda, W. Hane, Y. Bando, Y. Terashima, Y. Haketa, H. Shibaguchi, T. Kawai, M. Naito, K. Takaishi, M. Uchiyama, A. Muranaka, Chirality induction by formation of assembled structures based on anion-responsive π-conjugated molecules. Chem. Eur. J. 19, 16263--16271 (2013)Google Scholar
  48. 48.
    B. Dong, T. Sakurai, Y. Bando, S. Seki, K. Takaishi, M. Uchiyama, A. Muranaka, H. Maeda, Ion-based materials derived from positively and negatively charged chloride complexes of π-conjugated molecules. J. Am. Chem. Soc. 135, 14797--14805 (2013)Google Scholar
  49. 49.
    B.W. Laursen, F.C. Krebs, Synthesis of a triazatriangulenium salt. Angew. Chem. Int. Ed. 39, 3432–3434 (2000)CrossRefGoogle Scholar
  50. 50.
    B.W. Laursen, F.C. Krebs, Synthesis, structure, and properties of azatriangulenium salts. Chem. Eur. J. 7, 1773–1783 (2001)CrossRefGoogle Scholar
  51. 51.
    Y. Yamamoto, T. Fukushima, Y. Suna, N. Ishii, A. Saeki, S. Seki, S. Tagawa, M. Taniguchi, T. Kawai, T. Aida, Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314, 1761–1764 (2006)CrossRefADSGoogle Scholar
  52. 52.
    A. Saeki, S. Seki, T. Sunagawa, K. Ushida, S. Tagawa, Charge-carrier dynamics in polythiophene films studied by in situ measurement of flash-photolysis time-resolved microwave conductivity (FP-TRMC) and transient optical spectroscopy (TOS). Philos. Mag. 86, 1261–1276 (2006)CrossRefADSGoogle Scholar
  53. 53.
    T. Umeyama, N. Tezuka, S. Seki, Y. Matano, M. Nishi, K. Hirao, H. Lehtivuori, V.N. Tkachenko, H. Lemmetyinen, Y. Nakao, S. Sakaki, H. Imahori, Selective formation and efficient photocurrent generation of [70]fullerene–single-walled carbon nanotube composites. Adv. Mater. 22, 1767–1770 (2010)CrossRefGoogle Scholar
  54. 54.
    Y. Yasutani, A. Saeki, T. Fukumatsu, T. Koizumi, S. Seki, Unprecedented high local charge-carrier mobility in P3HT revealed by direct and alternating current methods. Chem. Lett. 42, 19–21 (2013)CrossRefGoogle Scholar
  55. 55.
    K. Sato, S. Takeuchi, S. Arai, M. Yamaguchi, T. Yamagishi, 4, 6-Bis(imidazolio)pyrimidine as a new anion receptor. Heterocycles 73, 209–215 (2007)CrossRefGoogle Scholar
  56. 56.
    A. Rit, T. Pape, F.E. Hahn, Self-assembly of molecular cylinders from polycarbene ligands and AgI or AuI. J. Am. Chem. Soc. 132, 4572–4573 (2010)CrossRefGoogle Scholar
  57. 57.
    H. Maeda, Y. Ito, Y. Kusunose, T. Nakanishi, Dipyrrolylpyrazoles: anion receptors in protonated form and efficient building blocks for organized structures. Chem. Commun. 1136–1138 (2007)Google Scholar
  58. 58.
    H. Maeda, K. Chigusa, T. Sakurai, K. Ohta, S. Uemura, S. Seki, Ion-pair-based assemblies comprising pyrrole–pyrazole hybrids. Chem. Eur. J. 19, 9224–9233 (2013)CrossRefGoogle Scholar

Copyright information

© © The Author(s) 2014

Authors and Affiliations

  1. 1.College of Pharmaceutical SciencesRitsumeikan UniversityKusatsuJapan

Personalised recommendations