Advertisement

On the Practical Security of a Leakage Resilient Masking Scheme

  • Emmanuel Prouff
  • Matthieu Rivain
  • Thomas Roche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8366)

Abstract

Implementations of cryptographic algorithms are vulnerable to Side-Channel Analyses extracting information from the device behaviour. When such an attack targets the manipulation of several, say d, intermediate variables then it is said to be a d th-order one. A privileged way to circumvent this type of attacks is to split any key-dependent variable into n shares, with n > d, and to adapt the internal processing in order to securely operate on these shares. The latter step is often very tricky and few schemes have been proposed which address this issue in a sound way.

At Asiacrypt 2012, Balasch et al. proposed a new scheme based on the inner-product sharing introduced the same year by Dziembowski and Faust at TCC. This scheme is the first one to aim at provable security in two different security models: the continuous bounded-range leakage model and the d th-order side-channel security model (sometimes called d-probing model).

In this paper, we contradict the d th-order security claim by exhibiting some first-order information leakages. Namely, we show that some intermediate variables of the scheme depend on secret information whatever the number of shares. This result is of importance since this kind of flaw is considered as a dead-end point when evaluating the practical security of an implementation. To illustrate the effectiveness of the flaw, we perform an information theoretic evaluation of the first-order leakage and we provide simulation results for a standard side-channel attack against the scheme.

Keywords

Secret Sharing Block Cipher Security Model Intermediate Variable Information Leakage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and practice of a leakage resilient masking scheme. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Goldwasser, S., Micciancio, D.: “Pseudo-random” number generation within cryptographic algorithms: The DSS case. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order masking schemes for s-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 366–384. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Chari, S., Jutla, C., Rao, J., Rohatgi, P.: A Cautionary Note Regarding Evaluation of AES Candidates on Smart-Cards. In: Second AES Candidate Conference – AES 2 (March 1999)Google Scholar
  6. 6.
    Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and mask refreshing. In: Moriai, S. (ed.) FSE. LNCS, Springer (2013) (to appear)Google Scholar
  7. 7.
    Dziembowski, S., Faust, S.: Leakage-resilient circuits without computational assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine Masking against Higher-Order Side Channel Analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel analysis with additive and multiplicative maskings. In: Preneel, Takagi [19], pp. 240–255Google Scholar
  10. 10.
    Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: How large is the gap for aes? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 400–416. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Kim, H., Hong, S., Lim, J.: A fast and provably secure higher-order masking of aes s-box. In: Preneel, Takagi [19], pp. 95–107Google Scholar
  13. 13.
    Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Lomné, V., Prouff, E., Roche, T.: Behind the Scene of Side Channel Attacks. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 506–525. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Messerges, T.: Using Second-order Power Analysis to Attack DPA Resistant software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-order DPA Attacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  20. 20.
    Prouff, E., Rivain, M.: Masking against Side-Channel Attacks: A Formal Security Proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Prouff, E., Rivain, M., Bévan, R.: Statistical Analysis of Second Order Differential Power Analysis. IEEE Transactions on Computers 58(6), 799–811 (2009)CrossRefGoogle Scholar
  22. 22.
    Prouff, E., Roche, T.: Higher-order glitches free implementation of the aes using secure multi-party computation protocols. In: Preneel, Takagi [19], pp. 63–78Google Scholar
  23. 23.
    Rivain, M., Prouff, E.: Provably secure higher-order masking of aes. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard, S.: The World is not Enough: Another Look on Second-Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Emmanuel Prouff
    • 1
  • Matthieu Rivain
    • 2
  • Thomas Roche
    • 1
  1. 1.ANSSIParis 07France
  2. 2.CryptoExpertsParisFrance

Personalised recommendations