An Automated Evaluation Tool for Improved Rebound Attack: New Distinguishers and Proposals of ShiftBytes Parameters for Grøstl

  • Yu Sasaki
  • Yuuki Tokushige
  • Lei Wang
  • Mitsugu Iwamoto
  • Kazuo Ohta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8366)

Abstract

In this paper, we study the security of AES-like permutations against the improved rebound attack proposed by Jean et al. at FSE 2012 which covers three full-active rounds in the inbound phase. The attack is very complicated and hard to verify its optimality when the state size is large and rectangle, namely the numbers of rows and columns are different. In the inbound phase of the improved rebound attack, several SuperSBoxes are generated for each of forward analysis and backward analysis. The attack searches for paired values that are consistent with all SuperSBoxes. The attack complexity depends on the order of the SuperSBoxes to be analyzed, and detecting the best order is hard. In this paper, we develop an automated complexity evaluation tool with several fast implementation techniques. The tool enables us to examine all the possible orders of the SuperSBoxes, and provides the best analysis order and complexity. We apply the tool to large block Rijndael in the known-key setting and the Grøstl-512 permutation. As a result, we obtain the first 9-round distinguisher for Rijndael-192 and Rijndael-224. It also shows the impossibility of the improved rebound attack against 9-round Rijndael-160 and 10-round Rijndael-256, and the optimality of the previous distinguisher against the 10-round Grøstl-512 permutation. Moreover, the efficiency of the improved rebound attack depends on the parameter of the ShiftRows operation. Our tool can exhaustively examine all the possible ShiftRows parameters to search for the ones that can resist the attack. We show new parameters for the Grøstl-512 permutation obtained by our tool, which can resist a 10-round improved rebound attack while the specification parameter cannot resist it.

Keywords

Rijndael Grøstl rebound attack ShiftRows ShiftBytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1998)Google Scholar
  2. 2.
    Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the reduced Grøstl compression function, ECHO permutation and AES block cipher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 16–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: Improved attacks for AES-like permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–383. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound distinguishers: Results on the full Whirlpool compression function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Rebound attack on the full lane compression function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 106–125. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Peyrin, T.: Improved differential attacks for ECHO and Grøstl. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active super-sbox analysis: Applications to ECHO and Grøstl. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 38–55. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Naya-Plasencia, M.: How to improve rebound attacks. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist Grøstl. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 110–126. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Grøstl addendum. Submission to NIST (2009) (updated)Google Scholar
  14. 14.
    Minier, M., Phan, R.C.-W., Pousse, B.: Distinguishers for ciphers and known key attack against rijndael with large blocks. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 60–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Sasaki, Y.: Known-key attacks on rijndael with large blocks and strengthening shiftRow parameter. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 301–315. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Daemen, J., Rijmen, V.: The design of Rijndeal: AES – the Advanced Encryption Standard (AES). Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    U.S. Department of Commerce, National Institute of Standards and Technology: Specification for the ADVANCED ENCRYPTION STANDARD (AES) (Federal Information Processing Standards Publication 197) (2001)Google Scholar
  18. 18.
    U.S. Department of Commerce, National Institute of Standards and Technology: Federal Register /Vol. 72, No. 212/Friday, November 2, 2007/Notices (2007) http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf.
  19. 19.
    Tokushige, Y.: Implemented tool of the improved rebound attack. Contact to the authors if the link is closed (2013), http://ohta-lab.jp/member/yuuki-tokushige/an-automated-evaluation-tool-for-improved-rebound-attack/
  20. 20.
    Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-birthday distinguishers for hash functions: Collisions beyond the birthday bound can be meaningful. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 504–523. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Nakasone, T., Li, Y., Sasaki, Y., Iwamoto, M., Ohta, K., Sakiyama, K.: Key-dependent weakness of AES-based ciphers under clockwise collision distinguisher. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 395–409. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yu Sasaki
    • 1
  • Yuuki Tokushige
    • 2
  • Lei Wang
    • 3
  • Mitsugu Iwamoto
    • 2
  • Kazuo Ohta
    • 2
  1. 1.NTT Secure Platform LaboratoriesJapan
  2. 2.The University of Electro-CommunicationsJapan
  3. 3.Nanyang Technological UniversitySingapore

Personalised recommendations