Advertisement

An Improved Compression Technique for Signatures Based on Learning with Errors

  • Shi Bai
  • Steven D. Galbraith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8366)

Abstract

We present a new approach to the compression technique of Lyubashevsky et al. [17,13] for lattice-based signatures based on learning with errors (LWE). Our ideas seem to be particularly suitable for signature schemes whose security, in the random oracle model, is based on standard worst-case computational assumptions. Our signatures are shorter than any previous proposal for provably-secure signatures based on standard lattice problems: at the 128-bit level we improve signature size from (more than) 16500 bits to around 9000 to 12000 bits.

Keywords

Lattice-based signatures learning with errors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the Efficacy of Solving LWE by Reduction to Unique-SVP. To appear Proceedings of International Conference on Information Security and Cryptology (2013)Google Scholar
  2. 2.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Neven, G.: Multi-Signatures in the Plain Public-Key Model and a General Forking Lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 390–399. ACM (2006)Google Scholar
  4. 4.
    Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and Practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 47–62. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical Signatures From Standard Assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Boyen, X.: Lattice Mixing and Vanishing Trapdoors – A Framework for Fully Secure Short Signatures and More. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical Hardness of Learning with Errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC 2013, pp. 575–584. ACM (2013)Google Scholar
  8. 8.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice Signatures and Bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)Google Scholar
  11. 11.
    Galbraith, S.D.: Space-efficient variants of cryptosystems based on learning with errors (2013) (preprint)Google Scholar
  12. 12.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New Cryptographic Constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM (2008)Google Scholar
  13. 13.
    Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Liu, M., Nguyen, P.Q.: Solving BDD by Enumeration, An Update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Lyubashevsky, V., Micciancio, D.: On Bounded Distance Decoding, Unique Shortest Vectors, and the Minimum Distance Problem. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A cryptographic Perspective. Kluwer (2002)Google Scholar
  19. 19.
    Micciancio, D., Regev, O.: Lattice-Based Cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post Quantum Cryptography, pp. 147–191. Springer (2009)Google Scholar
  20. 20.
    Micciancio, D., Peikert, C.: Hardness of SIS and LWE with Small Parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. J. Cryptology 13, 361–396 (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Stehlé, D., Steinfeld, R.: Making NTRUEncrypt and NTRUSign as Secure as Standard Worst-Case Problems over Ideal Lattices, Cryptology ePrint Archive: Report 2013/004 (2013)Google Scholar
  23. 23.
    Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)Google Scholar
  24. 24.
    Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. Journal of the ACM 56(6), article 34 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shi Bai
    • 1
  • Steven D. Galbraith
    • 1
  1. 1.Department of MathematicsUniversity of AucklandNew Zealand

Personalised recommendations