Advertisement

Understanding the Role of Notch in Osteosarcoma

  • Madonna M. McManus
  • Kurt R. Weiss
  • Dennis P. M. Hughes
Chapter
Part of the Advances in Experimental Medicine and Biology book series (volume 804)

Abstract

The Notch pathway has been described as an oncogene in osteosarcoma, but the myriad functions of all the members of this complex signaling pathway, both in malignant cells and nonmalignant components of tumors, make it more difficult to define Notch as simply an oncogene or a tumor suppressor. The cell-autonomous behaviors caused by Notch pathway manipulation may vary between cell lines but can include changes in proliferation, migration, invasiveness, oxidative stress resistance, and expression of markers associated with stemness or tumor-initiating cells. Beyond these roles, Notch signaling also plays a vital role in regulating tumor angiogenesis and vasculogenesis, which are vital aspects of osteosarcoma growth and behavior in vivo. Further, osteosarcoma cells themselves express relatively low levels of Notch ligand, making it likely that nonmalignant cells, especially endothelial cells and pericytes, are the major source of Notch activation in osteosarcoma tumors in vivo and in patients. As a result, Notch pathway expression is not expected to be uniform across a tumor but likely to be highest in those areas immediately adjacent to blood vessels. Therapeutic targeting of the Notch pathway is likewise expected to be complicated. Most pharmacologic approaches thus far have focused on inhibition of gamma secretase, a protease of the presenilin complex. This enzyme, however, has numerous other target proteins that would be expected to affect osteosarcoma behavior, including CD44, the WNT/β-catenin pathway, and Her-4. In addition, Notch plays a vital role in tissue and organ homeostasis in numerous systems, and toxicities, especially GI intolerance, have limited the effectiveness of gamma secretase inhibitors. New approaches are in development, and the downstream targets of Notch pathway signaling also may turn out to be good targets for therapy. In summary, a full understanding of the complex functions of Notch in osteosarcoma is only now unfolding, and this deeper knowledge will help position the field to better utilize novel therapies as they are developed.

Keywords

Osteosarcoma Notch DLL4 Jag1 Angiogenesis Metastasis Dormancy Cancer stem cells 

References

  1. 1.
    Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194(3):237–255PubMedGoogle Scholar
  2. 2.
    Kageyama R, Ohtsuka T (1999) The Notch-Hes pathway in mammalian neural development. Cell Res 9(3):179–188PubMedGoogle Scholar
  3. 3.
    Hilton M, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg H, Teitelbaum S, Ross F, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14(3):306–314PubMedPubMedCentralGoogle Scholar
  4. 4.
    Greenwald I, Kovall R (2013) Notch signaling: genetics and structure. WormBook : the online review of C elegans biology, pp 1–28Google Scholar
  5. 5.
    Kopan R (2012) Notch signaling. Cold Spring Harb Perspect Biol 4(10):a008904Google Scholar
  6. 6.
    Pittenger M, Mackay A, Beck S, Jaiswal R, Douglas R, Mosca J, Moorman M, Simonetti D, Craig S, Marshak D (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedGoogle Scholar
  7. 7.
    Crigler L, Kazhanie A, Yoon T-J, Zakhari J, Anders J, Taylor B, Virador V (2007) Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. FASEB J 21(9):2050–2063PubMedPubMedCentralGoogle Scholar
  8. 8.
    Tang N, Song W-X, Luo J, Haydon R, He T-C (2008) Osteosarcoma development and stem cell differentiation. Clin Orthopaed Relat Res 466(9):2114–2130Google Scholar
  9. 9.
    Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Gen Dev 13(8):1025–1036Google Scholar
  10. 10.
    Haydon R, Luu H, He T-C (2007) Osteosarcoma and osteoblastic differentiation: a new perspective on oncogenesis. Clin Orthopaed Relat Res 454:237–246Google Scholar
  11. 11.
    Hong J-H, Hwang E, McManus M, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman B, Sharp P, Hopkins N, Yaffe M (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309(5737):1074–1078PubMedGoogle Scholar
  12. 12.
    Lian J, Stein G, Javed A, van Wijnen A, Stein J, Montecino M, Hassan M, Gaur T, Lengner C, Young D (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endoc Metab Disord 7(1–2):1–16Google Scholar
  13. 13.
    Luu H, Song W-X, Luo X, Manning D, Luo J, Deng Z-L, Sharff K, Montag A, Haydon R, He T-C (2007) Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthopaed Res 25(5):665–677Google Scholar
  14. 14.
    Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng J, Behringer R, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29PubMedGoogle Scholar
  15. 15.
    Yamaguchi A, Komori T, Suda T (2000) Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endoc Rev 21(4):393–411Google Scholar
  16. 16.
    Deng Z-L, Sharff K, Tang N, Song W-X, Luo J, Luo X, Chen J, Bennett E, Reid R, Manning D, Xue A, Montag A, Luu H, Haydon R, He T-C (2008) Regulation of osteogenic differentiation during skeletal development. Front Biosci 13:2001–2021PubMedGoogle Scholar
  17. 17.
    Olsen B, Reginato A, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220PubMedGoogle Scholar
  18. 18.
    Harada S-i, Rodan G (2003) Control of osteoblast function and regulation of bone mass. Nature 423(6937):349–355PubMedGoogle Scholar
  19. 19.
    Ralston S, de Crombrugghe B (2006) Genetic regulation of bone mass and susceptibility to osteoporosis. Gen Dev 20(18):2492–2506Google Scholar
  20. 20.
    Gazzerro E, Canalis E (2006) Bone morphogenetic proteins and their antagonists. Rev Endoc Metab Disord 7(1–2):51–65Google Scholar
  21. 21.
    Krishnan V, Bryant H, Macdougald O (2006) Regulation of bone mass by Wnt signaling. J Clin Investig 116(5):1202–1209PubMedPubMedCentralGoogle Scholar
  22. 22.
    Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E (2006) Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem 281(10):6203–6210PubMedGoogle Scholar
  23. 23.
    Banerjee C, McCabe L, Choi J, Hiebert S, Stein J, Stein G, Lian J (1997) Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J Cell Biochem 66(1):1–8PubMedGoogle Scholar
  24. 24.
    Ducy P, Zhang R, Geoffroy V, Ridall A, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754PubMedGoogle Scholar
  25. 25.
    Motohiko S, Natsuo Y, Takanobu N, Hirohisa K, Mizuo S, Seiichi H, Yukihiko K, Shintaro N, Takahiro O (1998) Expression of bone matrix proteins mRNA during distraction osteogenesis. J Bone Miner Res 13(8):1221–1231Google Scholar
  26. 26.
    Xiao Z, Hinson T, Quarles L (1999) Cbfa1 isoform overexpression upregulates osteocalcin gene expression in non-osteoblastic and pre-osteoblastic cells. J Cell Biochem 74(4):596–605PubMedGoogle Scholar
  27. 27.
    Prince M, Banerjee C, Javed A, Green J, Lian J, Stein G, Bodine P, Komm B (2001) Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J Cell Biochem 80(3):424–440PubMedGoogle Scholar
  28. 28.
    Pregizer S, Barski A, Gersbach C, García A, Frenkel B (2007) Identification of novel Runx2 targets in osteoblasts: cell type-specific BMP-dependent regulation of Tram2. J Cell Biochem 102(6):1458–1471PubMedGoogle Scholar
  29. 29.
    Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson R, Gao Y, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764PubMedGoogle Scholar
  30. 30.
    Otto F, Thornell A, Crompton T, Denzel A, Gilmour K, Rosewell I, Stamp G, Beddington R, Mundlos S, Olsen B, Selby P, Owen M (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89(5):765–771PubMedGoogle Scholar
  31. 31.
    Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang M, Chen Y, Wang L, Zheng H, Sutton R, Boyce B, Lee B (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14(3):299–305PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sciaudone M, Gazzerro E, Priest L, Delany A, Canalis E (2003) Notch 1 impairs osteoblastic cell differentiation. Endocrinology 144(12):5631–5639PubMedGoogle Scholar
  33. 33.
    Tezuka K-I, Yasuda M, Watanabe N, Morimura N, Kuroda K, Miyatani S, Hozumi N (2002) Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 17(2):231–239PubMedGoogle Scholar
  34. 34.
    Zamurovic N, Cappellen D, Rohner D, Susa M (2004) Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 279(36):37704–37715PubMedGoogle Scholar
  35. 35.
    Espinosa L, Inglés-Esteve J, Aguilera C, Bigas A (2003) Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem 278(34):32227–32235PubMedGoogle Scholar
  36. 36.
    Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 11(8):880–885PubMedGoogle Scholar
  37. 37.
    Winslow M, Pan M, Starbuck M, Gallo E, Deng L, Karsenty G, Crabtree G (2006) Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 10(6):771–782PubMedGoogle Scholar
  38. 38.
    Ikeda F, Nishimura R, Matsubara T, Hata K, Reddy S, Yoneda T (2006) Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity. J Immunol 177(4):2384–2390PubMedGoogle Scholar
  39. 39.
    Dallas D, Genever P, Patton A, Millichip M, McKie N, Skerry T (1999) Localization of ADAM10 and Notch receptors in bone. Bone 25(1):9–15PubMedGoogle Scholar
  40. 40.
    Qi H, Rand M, Wu X, Sestan N, Wang W, Rakic P, Xu T, Artavanis-Tsakonas S (1999) Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 283(5398):91–94PubMedGoogle Scholar
  41. 41.
    Luo X, Chen J, Song W-X, Tang N, Luo J, Deng Z-L, Sharff K, He G, Bi Y, He B-C, Bennett E, Huang J, Kang Q, Jiang W, Su Y, Zhu G-H, Yin H, He Y, Wang Y, Souris J, Chen L, Zuo G-W, Montag A, Reid R, Haydon R, Luu H, He T-C (2008) Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Investig 88(12):1264–1277PubMedGoogle Scholar
  42. 42.
    Reya T, Morrison S, Clarke M, Weissman I (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedGoogle Scholar
  43. 43.
    Thomas D, Kansara M (2006) Epigenetic modifications in osteogenic differentiation and transformation. Journal of cellular biochemistry 98(4):757–769PubMedGoogle Scholar
  44. 44.
    Wagner E, He B-C, Chen L, Zuo G-W, Zhang W, Shi Q, Luo Q, Luo X, Liu B, Luo J, Rastegar F, He C, Hu Y, Boody B, Luu H, He T-C, Deng Z-L, Haydon R (2010) Therapeutic Implications of PPARgamma in Human Osteosarcoma. PPAR Res 2010:956427PubMedPubMedCentralGoogle Scholar
  45. 45.
    Thomas D, Johnson S, Sims N, Trivett M, Slavin J, Rubin B, Waring P, McArthur G, Walkley C, Holloway A, Diyagama D, Grim J, Clurman B, Bowtell D, Lee J-S, Gutierrez G, Piscopo D, Carty S, Hinds P (2004) Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biol 167(5):925–934PubMedPubMedCentralGoogle Scholar
  46. 46.
    Dailey D, Anfinsen K, Pfaff L, Ehrhart E, Charles J, Bønsdorff T, Thamm D, Powers B, Jonasdottir T, Duval D (2013) HES1, a target of Notch signaling, is elevated in canine osteosarcoma, but reduced in the most aggressive tumors. BMC Vet Res 9(1):130PubMedPubMedCentralGoogle Scholar
  47. 47.
    Engin F, Bertin T, Ma O, Jiang MM, Wang L, Sutton RE, Donehower LA, Lee B (2009) Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18(8):1464–1470PubMedPubMedCentralGoogle Scholar
  48. 48.
    Hughes DPM (2009) How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. In: Jaffe N, Bruland OS, Bielack S (eds) Pediatric and adolescent osteosarcoma. Cancer treatment and research, 152nd edn. Springer, New York, NY, pp 479–496Google Scholar
  49. 49.
    Li Y, Zhang J, Ma D, Zhang L, Si M, Yin H, Li J (2012) Curcumin inhibits proliferation and invasion of osteosarcoma cells through inactivation of Notch-1 signaling. FEBS J 279(12):2247–2259PubMedGoogle Scholar
  50. 50.
    Mu X, Isaac C, Greco N, Huard J, Weiss K (2013) Notch signaling is associated with ALDH activity and an aggressive metastatic phenotype in murine osteosarcoma cells. Front Oncol 3:143PubMedPubMedCentralGoogle Scholar
  51. 51.
    Tanaka M, Setoguchi T, Hirotsu M, Gao H, Sasaki H, Matsunoshita Y, Komiya S (2009) Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer 100(12):1957–1965PubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhang P, Yang Y, Nolo R, Zweidler-McKay PA, Hughes DP (2010) Regulation of NOTCH signaling by reciprocal inhibition of HES1 and Deltex 1 and its role in osteosarcoma invasiveness. Oncogene 29(20):2916–2926. doi: 10.1038/onc.2010.62 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Artavanis-Tsakonas S, Rand M, Lake R (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776PubMedGoogle Scholar
  54. 54.
    Shawber C, Kitajewski J (2004) Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays 26(3):225–234PubMedGoogle Scholar
  55. 55.
    Kume T (2009) Novel insights into the differential functions of Notch ligands in vascular formation. J Angiogen Res 1:8Google Scholar
  56. 56.
    Limbourg F, Takeshita K, Radtke F, Bronson R, Chin M, Liao J (2005) Essential role of endothelial Notch1 in angiogenesis. Circulation 111(14):1826–1832PubMedPubMedCentralGoogle Scholar
  57. 57.
    Krebs L, Xue Y, Norton C, Shutter J, Maguire M, Sundberg J, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith G, Stark K, Gridley T (2000) Notch signaling is essential for vascular morphogenesis in mice. Gen Dev 14(11):1343–1352Google Scholar
  58. 58.
    Swiatek P, Lindsell C, del Amo F, Weinmaster G, Gridley T (1994) Notch1 is essential for postimplantation development in mice. Gen Dev 8(6):707–719Google Scholar
  59. 59.
    Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman J, Tsujimoto Y (1999) Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126(15):3415–3424PubMedGoogle Scholar
  60. 60.
    Xue Y, Gao X, Lindsell C, Norton C, Chang B, Hicks C, Gendron-Maguire M, Rand E, Weinmaster G, Gridley T (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8(5):723–730PubMedGoogle Scholar
  61. 61.
    Sörensen I, Adams R, Gossler A (2009) DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113(22):5680–5688PubMedGoogle Scholar
  62. 62.
    HrabÄ de Angelis M, McIntyre 2nd J, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386(6626):717–721Google Scholar
  63. 63.
    Gale N, Dominguez M, Noguera I, Pan L, Hughes V, Valenzuela D, Murphy A, Adams N, Lin H, Holash J, Thurston G, Yancopoulos G (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A 101(45):15949–15954PubMedPubMedCentralGoogle Scholar
  64. 64.
    Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J (2004) Dosage-sensitive requirement for mouse DLL4 in artery development. Gen Dev 18(20):2474–2478Google Scholar
  65. 65.
    Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Gen Dev 18(8):901–911Google Scholar
  66. 66.
    Krebs L, Shutter J, Tanigaki K, Honjo T, Stark K, Gridley T (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Gen Dev 18(20):2469–2473Google Scholar
  67. 67.
    Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L, Umans L, Schrijvers V, Checler F, Vanderstichele H, Baekelandt V, Dressel R, Cupers P, Huylebroeck D, Zwijsen A, Van Leuven F, De Strooper B (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci U S A 96(21):11872–11877PubMedPubMedCentralGoogle Scholar
  68. 68.
    Nakajima M, Yuasa S, Ueno M, Takakura N, Koseki H, Shirasawa T (2003) Abnormal blood vessel development in mice lacking presenilin-1. Mech Dev 120(6):657–667PubMedGoogle Scholar
  69. 69.
    Uyttendaele H, Ho J, Rossant J, Kitajewski J (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci U S A 98(10):5643–5648PubMedPubMedCentralGoogle Scholar
  70. 70.
    Krebs L, Starling C, Chervonsky A, Gridley T (2010) Notch1 activation in mice causes arteriovenous malformations phenocopied by ephrinB2 and EphB4 mutants. Genesis 48(3):146–150PubMedPubMedCentralGoogle Scholar
  71. 71.
    Shawber C, Das I, Francisco E, Kitajewski J (2003) Notch signaling in primary endothelial cells. Ann N Y Acad Sci 995:162–170PubMedGoogle Scholar
  72. 72.
    Kofler N, Shawber C, Kangsamaksin T, Reed H, Galatioto J, Kitajewski J (2011) Notch signaling in developmental and tumor angiogenesis. Gen Cancer 2(12):1106–1116Google Scholar
  73. 73.
    Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502PubMedPubMedCentralGoogle Scholar
  74. 74.
    Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676PubMedGoogle Scholar
  75. 75.
    Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zioncheck T, Pelletier N, Ferrara N (2001) Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem 276(5):3222–3230PubMedGoogle Scholar
  76. 76.
    Shalaby F, Rossant J, Yamaguchi T, Gertsenstein M, Wu X, Breitman M, Schuh A (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66PubMedGoogle Scholar
  77. 77.
    Kappas N, Zeng G, Chappell J, Kearney J, Hazarika S, Kallianos K, Patterson C, Annex B, Bautch V (2008) The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. J Cell Biol 181(5):847–858PubMedPubMedCentralGoogle Scholar
  78. 78.
    Shibuya M (2006) Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 39(5):469PubMedGoogle Scholar
  79. 79.
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea K, Powell-Braxton L, Hillan K, Moore M (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442PubMedGoogle Scholar
  80. 80.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439PubMedGoogle Scholar
  81. 81.
    Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 104(9):3225–3230PubMedPubMedCentralGoogle Scholar
  82. 82.
    Hellström M, Phng L-K, Hofmann J, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson A-K, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe M, Kalén M, Gerhardt H, Betsholtz C (2007) DLL4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780PubMedGoogle Scholar
  83. 83.
    Lobov I, Renard R, Papadopoulos N, Gale N, Thurston G, Yancopoulos G, Wiegand S (2007) Delta-like ligand 4 (DLL4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 104(9):3219–3224PubMedPubMedCentralGoogle Scholar
  84. 84.
    Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177PubMedPubMedCentralGoogle Scholar
  85. 85.
    del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker J, Larrivee B, Breant C, Duarte A, Takakura N, Fukamizu A, Penninger J, Eichmann A (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116(19):4025–4033PubMedGoogle Scholar
  86. 86.
    Mats H, Li-Kun P, Holger G (2007) VEGF and notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr 1(3):133–136Google Scholar
  87. 87.
    Benedito R, Hellström M (2013) Notch as a hub for signaling in angiogenesis. Exp Cell Res 319(9):1281–1288PubMedGoogle Scholar
  88. 88.
    Eilken H, Adams R (2010) Turning on the angiogenic microswitch. Nat Med 16(8):853–854PubMedGoogle Scholar
  89. 89.
    Harrington L, Sainson R, Williams C, Taylor J, Shi W, Li J-L, Harris A (2008) Regulation of multiple angiogenic pathways by DLL4 and Notch in human umbilical vein endothelial cells. Microvasc Res 75(2):144–154PubMedGoogle Scholar
  90. 90.
    Eilken H, Adams R (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22(5):617–625PubMedGoogle Scholar
  91. 91.
    Iruela-Arispe M, Davis G (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16(2):222–231PubMedGoogle Scholar
  92. 92.
    Dejana E, Tournier-Lasserve E, Weinstein B (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16(2):209–221PubMedGoogle Scholar
  93. 93.
    Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M, Waltari M, Hellström M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Ylä-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660PubMedGoogle Scholar
  94. 94.
    Benedito R, Rocha S, Woeste M, Zamykal M, Radtke F, Casanovas O, Duarte A, Pytowski B, Adams R (2012) Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484(7392):110–114PubMedGoogle Scholar
  95. 95.
    Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, Zheng W, Franco C, Murtomäki A, Aranda E, Miura N, Ylä-Herttuala S, Fruttiger M, Mäkinen T, Eichmann A, Pollard J, Gerhardt H, Alitalo K (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13(10):1202–1213PubMedPubMedCentralGoogle Scholar
  96. 96.
    Hisaki H, Tsutomu K (2009) Foxc2 transcription factor as a regulator of angiogenesis via induction of integrin β3 expression. Cell Adh Migr 3(1):24–26Google Scholar
  97. 97.
    Chappell J, Taylor S, Ferrara N, Bautch V (2009) Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev Cell 17(3):377–386PubMedPubMedCentralGoogle Scholar
  98. 98.
    Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, Adams R (2009) The notch ligands DLL4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6):1124–1135PubMedGoogle Scholar
  99. 99.
    Thomas J-L, Baker K, Han J, Calvo C, Nurmi H, Eichmann A, Alitalo K (2013) Interactions between VEGFR and Notch signaling pathways in endothelial and neural cells. Cell Mol Life Sci 70(10):1779–1792PubMedPubMedCentralGoogle Scholar
  100. 100.
    Phng L-K, Potente M, Leslie J, Babbage J, Nyqvist D, Lobov I, Ondr J, Rao S, Lang R, Thurston G, Gerhardt H (2009) Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16(1):70–82PubMedGoogle Scholar
  101. 101.
    Sainson R, Aoto J, Nakatsu M, Holderfield M, Conn E, Koller E, Hughes C (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029PubMedGoogle Scholar
  102. 102.
    Kageyama R, Masamizu Y, Niwa Y (2007) Oscillator mechanism of Notch pathway in the segmentation clock. Dev Dyn 236(6):1403–1409PubMedGoogle Scholar
  103. 103.
    Jakobsson L, Franco C, Bentley K, Collins R, Ponsioen B, Aspalter I, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953PubMedGoogle Scholar
  104. 104.
    Leslie J, Ariza-McNaughton L, Bermange A, McAdow R, Johnson S, Lewis J (2007) Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134(5):839–844PubMedGoogle Scholar
  105. 105.
    Noguera-Troise I, Daly C, Papadopoulos N, Coetzee S, Boland P, Gale N, Lin H, Yancopoulos G, Thurston G (2006) Blockade of DLL4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444(7122):1032–1037PubMedGoogle Scholar
  106. 106.
    Ridgway J, Zhang G, Wu Y, Stawicki S, Liang W-C, Chanthery Y, Kowalski J, Watts R, Callahan C, Kasman I, Singh M, Chien M, Tan C, Hongo J-AS, de Sauvage F, Plowman G, Yan M (2006) Inhibition of DLL4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444(7122):1083–1087PubMedGoogle Scholar
  107. 107.
    Siekmann A, Lawson N (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781–784PubMedGoogle Scholar
  108. 108.
    Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16(2):196–208PubMedGoogle Scholar
  109. 109.
    Siekmann A, Affolter M, Belting H-G (2013) The tip cell concept 10 years after: new players tune in for a common theme. Exp Cell Res 319(9):1255–1263PubMedGoogle Scholar
  110. 110.
    Benjamin L, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125(9):1591–1598PubMedGoogle Scholar
  111. 111.
    Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523PubMedGoogle Scholar
  112. 112.
    Villa N, Walker L, Lindsell C, Gasson J, Iruela-Arispe M, Weinmaster G (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108(1–2):161–164PubMedGoogle Scholar
  113. 113.
    Liu H, Kennard S, Lilly B (2009) NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ Res 104(4):466–475PubMedPubMedCentralGoogle Scholar
  114. 114.
    Schadler KL, Zweidler-McKay PA, Guan H, Kleinerman ES (2010) Delta-like ligand 4 plays a critical role in pericyte/vascular smooth muscle cell formation during vasculogenesis and tumor vessel expansion in Ewing’s sarcoma. Clin Cancer Res 16(3):848–856PubMedPubMedCentralGoogle Scholar
  115. 115.
    Stewart KS, Zhou Z, Zweidler-McKay P, Kleinerman ES (2011) Delta-like ligand 4-Notch signaling regulates bone marrow-derived pericyte/vascular smooth muscle cell formation. Blood 117(2):719–726PubMedPubMedCentralGoogle Scholar
  116. 116.
    Crowther M, Brown N, Bishop E, Lewis C (2001) Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol 70(4):478–490PubMedGoogle Scholar
  117. 117.
    Schmidt T, Carmeliet P (2010) Blood-vessel formation: bridges that guide and unite. Nature 465(7299):697–699PubMedGoogle Scholar
  118. 118.
    Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S (2006) Potential role of microglia in retinal blood vessel formation. Investig Ophthalmol Vis Sci 47(8):3595–3602Google Scholar
  119. 119.
    Fantin A, Vieira J, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson S, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840PubMedPubMedCentralGoogle Scholar
  120. 120.
    Bigas A, Martin D, Milner L (1998) Notch1 and Notch2 inhibit myeloid differentiation in response to different cytokines. Mol Cell Biol 18(4):2324–2333PubMedPubMedCentralGoogle Scholar
  121. 121.
    Monsalve E, Pérez M, Rubio A, Ruiz-Hidalgo M, Baladrón V, García-Ramírez J, Gómez J, Laborda J, Díaz-Guerra M (2006) Notch-1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity. J Immunol 176(9):5362–5373PubMedGoogle Scholar
  122. 122.
    Singh N, Phillips R, Iscove N, Egan S (2000) Expression of notch receptors, notch ligands, and fringe genes in hematopoiesis. Exp Hematol 28(5):527–534PubMedGoogle Scholar
  123. 123.
    Murakami M, Zheng Y, Hirashima M, Suda T, Morita Y, Ooehara J, Ema H, Fong G-H, Shibuya M (2008) VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment. Arterioscler Thromb Vasc Biol 28(4):658–664PubMedGoogle Scholar
  124. 124.
    Outtz H, Wu J, Wang X, Kitajewski J (2010) Notch1 deficiency results in decreased inflammation during wound healing and regulates vascular endothelial growth factor receptor-1 and inflammatory cytokine expression in macrophages. J Immunol 185(7):4363–4373PubMedGoogle Scholar
  125. 125.
    Outtz H, Tattersall I, Kofler N, Steinbach N, Kitajewski J (2011) Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118(12):3436–3439PubMedPubMedCentralGoogle Scholar
  126. 126.
    Leung D, Cachianes G, Kuang W, Goeddel D, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309PubMedGoogle Scholar
  127. 127.
    Hu P, Liu W, Wang L, Yang M, Du J (2013) High circulating VEGF level predicts poor overall survival in lung cancer. J Cancer Res Clin Oncol 139(7):1157–1167PubMedGoogle Scholar
  128. 128.
    Claesson-Welsh L, Welsh M (2013) VEGFA and tumour angiogenesis. J Intern Med 273(2):114–127PubMedGoogle Scholar
  129. 129.
    Yu X-W, Wu T-Y, Yi X, Ren W-P, Zhou Z-B, Sun Y-Q, Zhang C-Q (2013) Prognostic significance of VEGF expression in osteosarcoma: a meta-analysis. Tumour Biol 35(1):155–160PubMedGoogle Scholar
  130. 130.
    Chen D, Zhang Y-J, K-w Z, Wang W-C (2013) A systematic review of vascular endothelial growth factor expression as a biomarker of prognosis in patients with osteosarcoma. Tumour Biol 34(3):1895–1899PubMedGoogle Scholar
  131. 131.
    Lammli J, Fan M, Rosenthal H, Patni M, Rinehart E, Vergara G, Ablah E, Wooley P, Lucas G, Yang S-Y (2012) Expression of vascular endothelial growth factor correlates with the advance of clinical osteosarcoma. Int Orthopaed 36(11):2307–2313Google Scholar
  132. 132.
    Ranganathan P, Weaver K, Capobianco A (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11(5):338–351PubMedGoogle Scholar
  133. 133.
    Patel N, Li J-L, Generali D, Poulsom R, Cranston D, Harris A (2005) Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 65(19):8690–8697PubMedGoogle Scholar
  134. 134.
    Rehman A, Wang C-Y (2006) Notch signaling in the regulation of tumor angiogenesis. Trend Cell Biol 16(6):293–300Google Scholar
  135. 135.
    Dufraine J, Funahashi Y, Kitajewski J (2008) Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene 27(38):5132–5137PubMedPubMedCentralGoogle Scholar
  136. 136.
    Chi Sabins N, Taylor J, Fabian K, Appleman L, Maranchie J, Stolz D, Storkus W (2013) DLK1: a novel target for immunotherapeutic remodeling of the tumor blood vasculature. Mol Ther 21(10):1958–1968PubMedPubMedCentralGoogle Scholar
  137. 137.
    Li J-L, Sainson R, Shi W, Leek R, Harrington L, Preusser M, Biswas S, Turley H, Heikamp E, Hainfellner J, Harris A (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67(23):11244–11253PubMedGoogle Scholar
  138. 138.
    Segarra M, Williams C, Sierra MDLL, Bernardo M, McCormick P, Maric D, Regino C, Choyke P, Tosato G (2008) DLL4 activation of Notch signaling reduces tumor vascularity and inhibits tumor growth. Blood 112(5):1904–1911PubMedPubMedCentralGoogle Scholar
  139. 139.
    Trindade A, Kumar S, Scehnet J, Lopes-da-Costa L, Becker J, Jiang W, Liu R, Gill P, Duarte A (2008) Overexpression of delta-like 4 induces arterialization and attenuates vessel formation in developing mouse embryos. Blood 112(5):1720–1729PubMedPubMedCentralGoogle Scholar
  140. 140.
    Williams C, Li J-L, Murga M, Harris A, Tosato G (2006) Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 107(3):931–939PubMedPubMedCentralGoogle Scholar
  141. 141.
    Zhang J-P, Qin H-Y, Wang L, Liang L, Zhao X-C, Cai W-X, Wei Y-N, Wang C-M, Han H (2011) Overexpression of Notch ligand DLL1 in B16 melanoma cells leads to reduced tumor growth due to attenuated vascularization. Cancer Lett 309(2):220–227PubMedGoogle Scholar
  142. 142.
    Zhao X-C, Dou G-R, Wang L, Liang L, Tian D-M, Cao X-L, Qin H-Y, Wang C-M, Zhang P, Han H (2013) Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human delta-like 1 targeted to vascular endothelial cells. Neoplasia 15(7):815–825PubMedPubMedCentralGoogle Scholar
  143. 143.
    Scehnet J, Jiang W, Kumar S, Krasnoperov V, Trindade A, Benedito R, Djokovic D, Borges C, Ley E, Duarte A, Gill P (2007) Inhibition of DLL4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood 109(11):4753–4760PubMedPubMedCentralGoogle Scholar
  144. 144.
    Yan M, Callahan C, Beyer J, Allamneni K, Zhang G, Ridgway J, Niessen K, Plowman G (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463(7282):7Google Scholar
  145. 145.
    Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6, Supplement 16):15–18PubMedGoogle Scholar
  146. 146.
    Indraccolo S, Minuzzo S, Masiero M, Pusceddu I, Persano L, Moserle L, Reboldi A, Favaro E, Mecarozzi M, Di Mario G, Screpanti I, Ponzoni M, Doglioni C, Amadori A (2009) Cross-talk between tumor and endothelial cells involving the Notch3-DLL4 interaction marks escape from tumor dormancy. Cancer Res 69(4):1314–1323PubMedGoogle Scholar
  147. 147.
    Indraccolo S, Favaro E, Amadori A (2006) Dormant tumors awaken by a short-term angiogenic burst: the spike hypothesis. Cell Cycle 5(16):1751–1755PubMedGoogle Scholar
  148. 148.
    Almog N, Ma L, Raychowdhury R, Schwager C, Erber R, Short S, Hlatky L, Vajkoczy P, Huber PE, Folkman J, Abdollahi A (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69(3):836–844PubMedGoogle Scholar
  149. 149.
    Indraccolo S (2013) Insights into the regulation of tumor dormancy by angiogenesis in experimental tumors. Adv Exp Med Biol 734:37–52PubMedGoogle Scholar
  150. 150.
    Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131(5):965–973PubMedGoogle Scholar
  151. 151.
    Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689PubMedGoogle Scholar
  152. 152.
    Zweidler-McKay P, Pear W (2004) Notch and T cell malignancy. Semin Cancer Biol 14(5):329–340PubMedGoogle Scholar
  153. 153.
    Hu YY, Zheng MH, Zhang R, Liang YM, Han H (2012) Notch signaling pathway and cancer metastasis. Adv Exp Med Biol 727:186–198PubMedGoogle Scholar
  154. 154.
    Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, Sriuranpong V, Iso T, Meszoely IM, Wolfe MS, Hruban RH, Ball DW, Schmid RM, Leach SD (2003) Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3(6):565–576PubMedGoogle Scholar
  155. 155.
    van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435(7044):959–963PubMedGoogle Scholar
  156. 156.
    Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH (2010) Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem 109(4):726–736PubMedGoogle Scholar
  157. 157.
    Weng AP, Ferrando AA, Lee W, Morris JPT, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271PubMedGoogle Scholar
  158. 158.
    Bai F, Tagen M, Colotta C, Miller L, Fouladi M, Stewart CF (2010) Determination of the gamma-secretase inhibitor MK-0752 in human plasma by online extraction and electrospray tandem mass spectrometry (HTLC-ESI-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 878(25):2348–2352PubMedPubMedCentralGoogle Scholar
  159. 159.
    Cheng X, O’Neill HC (2009) Oncogenesis and cancer stem cells: current opinions and future directions. J Cell Mol Med 13(11–12):4377–4384PubMedGoogle Scholar
  160. 160.
    Fouladi M, Stewart CF, Olson J, Wagner LM, Onar-Thomas A, Kocak M, Packer RJ, Goldman S, Gururangan S, Gajjar A, Demuth T, Kun LE, Boyett JM, Gilbertson RJ (2011) Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol 29(26):3529–3534PubMedPubMedCentralGoogle Scholar
  161. 161.
    Mazumdar J, Dondeti V, Simon MC (2009) Hypoxia-inducible factors in stem cells and cancer. J Cell Mol Med 13(11–12):4319–4328PubMedPubMedCentralGoogle Scholar
  162. 162.
    Shih Ie M, Wang TL (2007) Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res 67(5):1879–1882PubMedGoogle Scholar
  163. 163.
    Wang Z, Li Y, Banerjee S, Sarkar FH (2009) Emerging role of Notch in stem cells and cancer. Cancer Lett 279(1):8–12PubMedPubMedCentralGoogle Scholar
  164. 164.
    Zweidler-McKay PA, He Y, Xu L, Rodriguez CG, Karnell FG, Carpenter AC, Aster JC, Allman D, Pear WS (2005) Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood 106(12):3898–3906PubMedPubMedCentralGoogle Scholar
  165. 165.
    Kannan S, Sutphin RM, Hall MG, Golfman LS, Fang W, Nolo RM, Akers LJ, Hammitt RA, McMurray JS, Kornblau SM, Melnick AM, Figueroa ME, Zweidler-McKay PA (2013) Notch activation inhibits AML growth and survival: a potential therapeutic approach. J Exp Med 210(2):321–337PubMedPubMedCentralGoogle Scholar
  166. 166.
    Proweller A, Tu L, Lepore JJ, Cheng L, Lu MM, Seykora J, Millar SE, Pear WS, Parmacek MS (2006) Impaired Notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res 66(15):7438–7444PubMedGoogle Scholar
  167. 167.
    Zage P, Nolo R, Fang W, Stewart J, Garcia-Manero G, Zweidler-McKay P (2012) Notch pathway activation induces neuroblastoma tumor cell growth arrest. Pediatr Blood Cancer 58(5):682–689PubMedPubMedCentralGoogle Scholar
  168. 168.
    Kunnimalaiyaan M, Chen H (2007) Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist 12(5):535–542PubMedGoogle Scholar
  169. 169.
    Dumont AG, Yang Y, Reynoso D, Katz D, Trent JC, Hughes DP (2012) Anti-tumor effects of the Notch pathway in gastrointestinal stromal tumors. Carcinogenesis 33(9):1674–1683PubMedPubMedCentralGoogle Scholar
  170. 170.
    Hughes DP (2009) How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat Res 152:479–496PubMedGoogle Scholar
  171. 171.
    Capaccione KM, Pine SR (2013) The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis 34(7):1420–1430PubMedPubMedCentralGoogle Scholar
  172. 172.
    Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li Y-M, Eberhart CG (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66(15):7445–7452PubMedGoogle Scholar
  173. 173.
    Farnie G, Clarke R (2007) Mammary stem cells and breast cancer – role of Notch signalling. Stem Cell Rev 3(2):169–175PubMedGoogle Scholar
  174. 174.
    Hassan KA, Wang L, Korkaya H, Chen G, Maillard I, Beer DG, Kalemkerian GP, Wicha MS (2013) Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res 19(8):1972–1980PubMedPubMedCentralGoogle Scholar
  175. 175.
    Korkaya H, Wicha MS (2009) HER-2, Notch, and breast cancer stem cells: targeting an axis of evil. Clin Cancer Res 15(6):1845–1847PubMedGoogle Scholar
  176. 176.
    Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B, Schuster K, Shao C, Larsen JE, Sullivan LA, Honorio S, Xie Y, Scaglioni PP, DiMaio JM, Gazdar AF, Shay JW, Wistuba II, Minna JD (2010) Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 70(23):9937–9948PubMedPubMedCentralGoogle Scholar
  177. 177.
    Wang J, Sullenger B, Rich J (2012) Notch signaling in cancer stem cells. Adv Exp Med Biol 727:174–185PubMedGoogle Scholar
  178. 178.
    Adhikari AS, Agarwal N, Wood BM, Porretta C, Ruiz B, Pochampally RR, Iwakuma T (2010) CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. Cancer Res 70(11):4602–4612PubMedPubMedCentralGoogle Scholar
  179. 179.
    Williams S, Maecker H, French D, Liu J, Gregg A, Silverstein L, Cao T, Carano R, Dixit V (2011) USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell 146(6):918–930PubMedGoogle Scholar
  180. 180.
    Wang L, Park P, Lin C (2009) Characterization of stem cell attributes in human osteosarcoma cell lines. Cancer Biol Ther 8(6):543–552PubMedGoogle Scholar
  181. 181.
    Siclari V, Qin L (2010) Targeting the osteosarcoma cancer stem cell. J Orthop Surg Res 5:78PubMedPubMedCentralGoogle Scholar
  182. 182.
    Gibbs C, Levings P, Ghivizzani S (2011) Evidence for the osteosarcoma stem cell. Curr Orthop Pract 22(4):322–326PubMedPubMedCentralGoogle Scholar
  183. 183.
    Di Fiore R, Fanale D, Drago-Ferrante R, Chiaradonna F, Giuliano M, De Blasio A, Amodeo V, Corsini L, Bazan V, Tesoriere G, Vento R, Russo A (2012) Genetic and molecular characterization of the human osteosarcoma 3AB-OS cancer stem cell line: a possible model for studying osteosarcoma origin and stemness. J Cell Physiol 228(6):1189–1201Google Scholar
  184. 184.
    Di Fiore R, Santulli A, Ferrante R, Giuliano M, De Blasio A, Messina C, Pirozzi G, Tirino V, Tesoriere G, Vento R (2009) Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment. J Cell Physiol 219(2):301–313PubMedGoogle Scholar
  185. 185.
    Tang Q, Zhao Z, Li J, Liang Y, Yin J, Zou C, Xie X, Zeng Y, Shen J, Kang T, Wang J (2011) Salinomycin inhibits osteosarcoma by targeting its tumor stem cells. Cancer Lett 311(1):113–121PubMedGoogle Scholar
  186. 186.
    Wilson H, Huelsmeyer M, Chun R, Young K, Friedrichs K, Argyle D (2008) Isolation and characterisation of cancer stem cells from canine osteosarcoma. Vet J 175(1):69–75PubMedGoogle Scholar
  187. 187.
    Martins-Neves S, Lopes Á, do Carmo A, Paiva A, Simoes P, Abrunhosa A, Gomes C (2012) Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line. BMC Cancer 12:139PubMedPubMedCentralGoogle Scholar
  188. 188.
    Liu B, Ma W, Jha R, Gurung K (2011) Cancer stem cells in osteosarcoma: recent progress and perspective. Acta Oncol 50(8):1142–1150PubMedGoogle Scholar
  189. 189.
    Basu-Roy U, Basilico C, Mansukhani A (2012) Perspectives on cancer stem cells in osteosarcoma. Cancer Lett 338(1):158–167PubMedPubMedCentralGoogle Scholar
  190. 190.
    Wang L, Park P, Zhang H, La Marca F, Lin C (2011) Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int J Cancer 128(2):294–303PubMedGoogle Scholar
  191. 191.
    Wang L, Park P, Zhang H, La Marca F, Claeson A, Valdivia J, Lin C (2011) BMP-2 inhibits the tumorigenicity of cancer stem cells in human osteosarcoma OS99-1 cell line. Cancer Biol Ther 11(5):457–463PubMedPubMedCentralGoogle Scholar
  192. 192.
    Rainusso N, Man T, Lau C, Hicks J, Shen J, Yu A, Wang L, Rosen J (2011) Identification and gene expression profiling of tumor-initiating cells isolated from human osteosarcoma cell lines in an orthotopic mouse model. Cancer Biol Ther 12(4):278–287PubMedPubMedCentralGoogle Scholar
  193. 193.
    Yang M, Yan M, Zhang R, Li J, Luo Z (2011) Side population cells isolated from human osteosarcoma are enriched with tumor-initiating cells. Cancer Sci 102(10):1774–1781PubMedGoogle Scholar
  194. 194.
    Huang Y, Dai H, Guo Q (2012) TSSC3 overexpression reduces stemness and induces apoptosis of osteosarcoma tumor-initiating cells. Apoptosis 17(8):749–761PubMedGoogle Scholar
  195. 195.
    Khanna C, Prehn J, Yeung C, Caylor J, Tsokos M, Helman L (2000) An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Meta 18(3):261–271Google Scholar
  196. 196.
    Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C, Trepel J, Meltzer P, Helman L (2001) Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 61(9):3750–3759PubMedGoogle Scholar
  197. 197.
    Weiss KR (2010) Inhibition of osteosarcoma metastatic potential with noggin and s-Flt. In: 2010 Meeting of the Musculoskeletal Tumor Society, Philadelphia, PA, 2010Google Scholar
  198. 198.
    Weiss KR, Cooper GM, Jadlowiec JA, McGough RL 3rd, Huard J (2006) VEGF and BMP expression in mouse osteosarcoma cells. Clin Orthop Relat Res 450:111–117PubMedGoogle Scholar
  199. 199.
    Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, Xerri L, Dontu G, Stassi G, Xiao Y, Barsky SH, Birnbaum D, Viens P, Wicha MS (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16(1):45–55PubMedPubMedCentralGoogle Scholar
  200. 200.
    Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL, Liang R, Leung AY (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 21(7):1423–1430PubMedGoogle Scholar
  201. 201.
    Cho HJ, Lee TS, Park JB, Park KK, Choe JY, Sin DI, Park YY, Moon YS, Lee KG, Yeo JH, Han SM, Cho YS, Choi MR, Park NG, Lee YS, Chang YC (2007) Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression. J Biochem Mol Biol 40(6):1069–1076PubMedGoogle Scholar
  202. 202.
    Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, Fields JZ, Wicha MS, Boman BM (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69(8):3382–3389PubMedPubMedCentralGoogle Scholar
  203. 203.
    Honoki K, Fujii H, Kubo A, Kido A, Mori T, Tanaka Y, Tsujiuchi T (2010) Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol Rep 24(2):501–505PubMedGoogle Scholar
  204. 204.
    Mu X, Isaac C, Schott T, Huard J, Weiss K (2013) Rapamycin Inhibits ALDH Activity, Resistance to Oxidative Stress, and Metastatic Potential in Murine Osteosarcoma Cells. Sarcoma 2013:11Google Scholar
  205. 205.
    Hughes DP (2009) Strategies for the targeted delivery of therapeutics for osteosarcoma. Expert Opin Drug Deliv 6(12):1311–1321PubMedPubMedCentralGoogle Scholar
  206. 206.
    Blake JA, Bult CJ, Eppig JT, Kadin JA, Richardson JE, The Mouse Genome Database Group (2014) The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. Nucleic Acids Res 42(D1):D810–D817Google Scholar
  207. 207.
    Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV, Weinmaster G, Gridley T (1998) Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev 12(7):1046–1057Google Scholar
  208. 208.
    Sorensen I, Adams RH, Gossler A (2009) DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113(22):5680–5688. doi: 10.1182/blood-2008-08-174508
  209. 209.
    Dunwoodie SL, Clements M, Sparrow DB, Sa X, Conlon RA, Beddington RS (2002) Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 129(7):1795–1806Google Scholar
  210. 210.
    Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z, Tournier-Lasserve E, Gridley T, Joutel A (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18(22):2730–2735Google Scholar
  211. 211.
    Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89(4):629–639Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Madonna M. McManus
    • 1
    • 2
  • Kurt R. Weiss
    • 3
  • Dennis P. M. Hughes
    • 4
  1. 1.The Children’s Cancer Hospital at MD Anderson Cancer CenterHoustonUSA
  2. 2.The University of Texas Graduate School of Biomedical Sciences at HoustonHoustonUSA
  3. 3.Department of Orthopedic SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA
  4. 4.The Children’s Cancer Hospital, University of Texas at MD Anderson Cancer CenterHoustonUSA

Personalised recommendations