Finite Element Model Updating Using the Separable Shadow Hybrid Monte Carlo Technique

  • I. BoulkaibetEmail author
  • L. Mthembu
  • T. Marwala
  • M. I. Friswell
  • S. Adhikari
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


The use of Bayesian techniques in Finite Element Model (FEM) updating has recently increased. These techniques have the ability to quantify and characterize the uncertainties of dynamic structures. In order to update a FEM, the Bayesian formulation requires the evaluation of the posterior distribution function. For large systems, this functions is either difficult (or not available) to solve in an analytical way. In such cases using sampling techniques can provide good approximations of the Bayesian posterior distribution function. The Hybrid Monte Carlo (HMC) method is a powerful sampling method for solving higher-dimensional complex problems. The HMC uses the molecular dynamics (MD) as a global Monte Carlo (MC) move to reach areas of high probability. However, the acceptance rate of HMC is sensitive to the system size as well as the time step used to evaluate MD trajectory. To overcome this, we propose the use of the Separable Shadow Hybrid Monte Carlo (S2HMC) method. This method generates samples from a separable shadow Hamiltonian. The accuracy and the efficiency of this sampling method is tested on the updating of a GARTEUR SM-AG19 structure.


Bayesian Sampling Finite element model updating Markov Chain Monte Carlo Hybrid Monte Carlo method Shadow Hybrid Monte Carlo 


  1. 1.
    Onãte E (2009) Structural analysis with the finite element method. Linear statics. Volume 1: basis and solids. Springer, DordrechtCrossRefGoogle Scholar
  2. 2.
    Rao SS (2004) The finite element method in engineering, 4th edn. Elsevier Butterworth Heinemann, BurlingtonGoogle Scholar
  3. 3.
    Friswell MI, Mottershead JE (1995) Finite element model updating in structural dynamics. Kluwer Academic Publishers, DordrechtCrossRefzbMATHGoogle Scholar
  4. 4.
    Marwala T (2010) Finite element model updating using computational intelligence techniques. Springer, London, UKCrossRefzbMATHGoogle Scholar
  5. 5.
    Bishop CM (2006) Pattern recognition and machine learning. Springer, New YorkzbMATHGoogle Scholar
  6. 6.
    Yuen KV (2010) Bayesian methods for structural dynamics and civil engineering. Wiley, New YorkCrossRefGoogle Scholar
  7. 7.
    Cheung SH, Beck JL (2009) Bayesian model updating using Hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters. J Eng Mech 135(4):243–255Google Scholar
  8. 8.
    Boulkaibet I, Marwala T, Mthembu L, Friswell MI, Adhikari S (2012) Sampling techniques in Bayesian finite element model updating. Proc Soc Exp Mech 29:75–83CrossRefGoogle Scholar
  9. 9.
    Izaguirre JA, Hampton SS, Comput J (2004) Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules. J Comput Phys 200:581–604CrossRefzbMATHGoogle Scholar
  10. 10.
    Neal RM (2000) Slice sampling. Technical report no. 2005. Department of Statistics, University of TorontoGoogle Scholar
  11. 11.
    Hanson KM (2001) Markov Chain Monte Carlo posterior sampling with the Hamiltonian method. Proc SPIE 4322:456–467CrossRefGoogle Scholar
  12. 12.
    Ewins DJ (1984) Modal testing: theory and practice. Research Studies Press, LetchworthGoogle Scholar
  13. 13.
    Marwala T, Sibisi S (2005) Finite element model updating using Bayesian approach. In Proceedings of the international modal analysis conference, Orlando, FL, USA, 2005. ISBN: 0-912053-89-5Google Scholar
  14. 14.
    Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Ching J, Leu SS (2009) Bayesian updating of reliability of civil infrastructure facilities based on condition-state data and fault-tree model. Reliab Eng Syst Saf 94(12):1962–1974CrossRefGoogle Scholar
  16. 16.
    Boulkaibet I, Mthembu L, Marwala T, Friswell MI, Adhikari S (2013) Finite element model updating using the shadow hybrid Monte Carlo technique. Proc Soc Exp Mech 6:489–498CrossRefGoogle Scholar
  17. 17.
    Sweet CR, Hampton SS, Skeel RD, Izaguirre JA (2009) A separable shadow Hamiltonian hybrid Monte Carlo method. J Chem Phys 131(17):174106CrossRefGoogle Scholar
  18. 18.
    Beskos A, Pillai NS, Roberts GO, Sanz-Serna JM, Stuart AM (2013) Optimal tuning of the hybrid Monte-Carlo algorithm. Bernoulli 19: 1501–1534CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Carvallo J, Datta BN, Gupta A, Lagadapati M (2007) A direct method for model updating with incomplete measured data and without spurious modes. Mech Syst Signal Process 21(7):2715–2731CrossRefGoogle Scholar
  20. 20.
    Datta BN (2002) Finite element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems. Mech Syst Signal Process 16:83–96CrossRefGoogle Scholar
  21. 21.
    Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182zbMATHGoogle Scholar
  22. 22.
    Link M, Friswell MI (2003) Generation of validated structural dynamic models—results of a benchmark study utilizing the GARTEUR SM-AG19 Testbed. Mech Syst Signal Process 17(1):9–20, COST Action Special IssueCrossRefGoogle Scholar
  23. 23.
    Mthembu L (2012) Finite element model updating. Ph.D. thesis, Faculty of Engineering and the Built Environment, University of the WitwatersrandGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2014

Authors and Affiliations

  • I. Boulkaibet
    • 1
    Email author
  • L. Mthembu
    • 1
  • T. Marwala
    • 1
  • M. I. Friswell
    • 2
  • S. Adhikari
    • 2
  1. 1.Electrical and Electronic Engineering DepartmentThe Centre For Intelligent System Modelling (CISM), University of JohannesburgAuckland ParkSouth Africa
  2. 2.College of Engineering, Swansea UniversitySwanseaUK

Personalised recommendations