Evaporation Modeling for Polydisperse Spray in Turbulent Flow

  • Mouldi ChriguiEmail author
  • Fernando Sacomano
  • Amsini Sadiki
  • Assaad R. Masri
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 19)


Based on an overview of existing vaporization models, a suggestion for capturing phase transition in a turbulent two phase flow is made. Focus is put on the Uniform Temperature Model (UTM). Comparison between equilibrium and non-equilibrium evaporation models to experimental data is highlighted. Two configurations with different fuels, i.e. different thermodynamic properties, are investigated and the results of both models are validated with the measurements. The configurations exhibit completely different boundary conditions and polydisperse turbulent multiphase flows with different classes and probability distribution of the droplet diameters. Large eddy simulation (LES) and Reynolds averaged numerical simulation (here RANS) models are used to capture the turbulence. In both configurations, results show that non-equilibrium effects influence the vaporization significantly. The UTM with the extension of non-equilibrium, by Langmuir and Knudsen, capture the vaporization well, whereas the equilibrium model over-predicts the volume flux of the liquid phase, i.e. the vaporization process is developing slower in case of equilibrium model. Worth to notice that the mean droplet diameter is between 20 and 40 µm. Thus the ratio of surface to volume is important if compared to larger droplets. Non-equilibrium effects are then correspondingly important and the equilibrium model is not able to describe the phase transition process well.


Large Eddy Simulation Carrier Phase Droplet Diameter Sherwood Number Droplet Evaporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bellan J., Harstad K., 1987: Analysis of the convective evaporation of nondilute clusters of drops. Int. J. Heat Mass Transfer 30 (1),125–136.Google Scholar
  2. 2.
    Bellan J. and Selle L. C.: “Large Eddy Simulation composition equations for single-phase and two-phase fully multicomponent flows” Proceedings of the Combustion Institute Volume 32, Issue 2, Pages 2239–2246, 2009.Google Scholar
  3. 3.
    Berlemont A., Grancher M. S., Gouesbet G.: On the Lagrangian simulation of turbulence influence on droplet evaporation. Int. J. Heat Mass Transfer 34 (11) 2805–2812, 1991.Google Scholar
  4. 4.
    Berlemont A., Grancher M. S. and Gouesbet G.: Heat and mass transfer coupling between vaporizing droplets and turbulence using a Lagrangian approach. J. of. Heat and Mass Transfer Vol.38 (1995) 3023–3034.Google Scholar
  5. 5.
    Bini M. and Jones W. P., Large-eddy simulation of particle-laden turbulent flows, J. Fluid Mech. vol. 614, 2008, pp. 207–252.Google Scholar
  6. 6.
    Bini M., Jones W. P. “Large Eddy Simulation of an evaporating acetone spray” International Journal of Heat and Fluid Flow, Volume 30, Issue 3, pp. 471–480, 2009.Google Scholar
  7. 7.
    Burger M., Schmehl R., Prommersberger K., Sch€afer O., Koch R., Wittig S.: “Droplet evaporation modeling by the distillation curve model: accounting for kerosene fuel and elevated pressures” International Journal of Heat and Mass Transfer 46 4403–4412, (2003).Google Scholar
  8. 8.
    Chrigui M. and Sadiki A.: “Effects of Turbulence Modulation on Mass and Heat Transfer: 3D-Numrical Prediction Based on Coupled Advanced Models for Turbulence and Evaporation” 4th Int. Symp. On Turbulence, Heat and Mass Transfer, October 12–17, Antalya, Turkey.Google Scholar
  9. 9.
    Chrigui, M., Ahmadi G., Sadiki A., “Study on Interaction in Spray between Evaporating Droplets and Turbulence Using Second Order Turbulence RANS Models and a Lagrangian Approach”, Progress in Computational Fluid Dynamics, Special issue, 2004.Google Scholar
  10. 10.
    Dianat M., Yang Z. and McGuirk J. J. Large-Eddy Simulation of a Two-Phase Plane Mixing-Layer, Advances in Turbulence XII, Springer Proceedings in Physics, 2009, Volume 132, Part 11, 2009, 775–778.Google Scholar
  11. 11.
    Faeth G. M.: Evaporation and combustion of sprays: Progress in energy and combustion science, Pergamon Press, 9:1–76, 1983.Google Scholar
  12. 12.
    Gökalp I., Chauveau C., Simon O., Chesneau X., “Mass transfer from Liquid fuel droplets in turbulent flow”, The combustion Institute 1992.Google Scholar
  13. 13.
    Hallett W. L. H.: “A simple model for the vaporization of droplets with large numbers of components”, Combustion and Flame 121, 334–344, 2000.Google Scholar
  14. 14.
    Kohnen, G., Rüger M. and Sommerfeld M. “Convergence behavior for numerical calculations by the EULER/LAGRANGE Method for strongly coupled phases.” FED-Vol 185, Numerical Methods in Multiphases Flows ASME 1994.Google Scholar
  15. 15.
    Law C. K.: Unsteady droplet vaporization with droplet heating. Combustion and Flame, 26: 17–22, 1976.Google Scholar
  16. 16.
    Lederlin T. and Pitsch H.: “Large-eddy simulation of an evaporating and reacting spray” Center for Turbulence Research Annual Research Briefs, 2008.Google Scholar
  17. 17.
    Maqua C., Castanet G., Lemoine F.: “Bicomponent droplets evaporation: Temperature measurements and modelling” Fuel, Volume 87, Issues 13–14, pp. 2932–2942, 2008.Google Scholar
  18. 18.
    Masri A. R. and Gounder J. D. Proc. of the 6th Mediterranean Com. Symp, 2009.Google Scholar
  19. 19.
    Miller R. S., Harstad K., Bellan J.: Evaluation of equilibrium and non-equilibrium evaporation models for many droplet gas liquid flow simulation, Int. J. of Multiphase flow, 24, pp. 1025–1055, 1998.Google Scholar
  20. 20.
    Oefelein J. C., Aggarwal S. K.: Toward a unified high pressure drop model for spray simulation, center for turbulence research, Proceedings of summer program 2000, pp. 193–205.Google Scholar
  21. 21.
    Pera C., Réveillon J., Vervisch L., Domingo P. “Modeling subgrid scale mixture fraction variance in LES of evaporating spray Combustion and Flame”, Volume 146, Issue 4, pp. 635–648, 2006.Google Scholar
  22. 22.
    Prommersberger K., Maier G., and Wittig S. (1998). Validation and Application of a Droplet Evaporation Model for Real Aviation Fuel, Proceedings of NATO-RTO Meeting on Gas Turbine Engine Combustion, Emissions and Alternative Fuels, Lisbon, Portugal, 12–16 October.Google Scholar
  23. 23.
    Prommersberger K., Stengele J., Dullenkopf K., Himmelsbach J. and Wittig S. “Investigations of droplet evaporation at elevated pressures” Collaborative Research Center 167, September 1998 Karlsruhe, Germany.Google Scholar
  24. 24.
    Sanjosé M., Lederlin T., Gicquel L., Cuenot B., Pitsch H., García-Rosa N., Lecourt R. and Poinsot T.: “LES of two-phase reacting flows”, Center for Turbulence Research Proceedings of the Summer Program, 2008.Google Scholar
  25. 25.
    Selle L. C. and Bellan J.: “Characteristics of transitional multicomponent gaseous and drop-laden mixing layers from Direct Numerical Simulation: Composition effects”, Physics of Fluids, 19, 063301-1-33, 2007.Google Scholar
  26. 26.
    Senoner J. M., Sanjosé M., Lederlin T., Jaegle F., García M., Riber E., Cuenot B., Gicquel L., Pitsch H., Poinsot T. “Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow” Comptes Rendus Mécanique, 2009.Google Scholar
  27. 27.
    Shotorban B., Zhang K. K. Q., Mashayek F. Improvement of particle concentration prediction in large-eddy simulation by defiltering, International Journal of Heat and Mass Transfer, Volume 50, Issues 19–20, 2007, Pages 3728–3739.Google Scholar
  28. 28.
    Sirignano W. A. “Fluid dynamics of sprays” 1992 Freeman Scholar Lecture J. Fluids Engng. Vol. 115, pp. 345–378. 1993.Google Scholar
  29. 29.
    Sirignano W. A., Wu G. “Multicomponent-liquid–fuel vaporization with complex configuration”, International Journal of Heat and Mass Transfer, Volume 51, Issues 19–20, pp. 4759–4774, 2008.Google Scholar
  30. 30.
    Sornek, R. J., Dobashi R., Hirano T., “Effect of Turbulence on Vaporization, Mixing, and Combustion of Liquid-fuel Sprays”, Combustion and Flame 120:479–491, 2000.Google Scholar
  31. 31.
    Stårner S. H., Gounder J., and Masri A. R., Com. & Flame, Vol. 143, pp. 420–432, Dec. 2005.Google Scholar
  32. 32.
    Zugasti M. A., Rosner D. E. “Multicomponent fuel droplet vaporization and combustion using spectral theory for a continuous mixture” Combustion and Flame, Volume 135, Issue 3, Pages 271–284, 2003.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mouldi Chrigui
    • 1
    • 2
    Email author
  • Fernando Sacomano
    • 1
  • Amsini Sadiki
    • 1
  • Assaad R. Masri
    • 3
  1. 1.Department of Mechanical Engineering, Institute for Energy and Powerplant TechnologyTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Research Unit Materials, Energy and Renewable EnergiesUniversity of GafsaGafsaTunisia
  3. 3.School of Aerospace, Mechanical and Mechatronic EngineeringThe University of SydneySydneyAustralia

Personalised recommendations