Advertisement

On Minimum Average Stretch Spanning Trees in Polygonal 2-Trees

  • N. S. Narayanaswamy
  • G. Ramakrishna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8344)

Abstract

A spanning tree of an unweighted graph is a minimum average stretch spanning tree if it minimizes the ratio of sum of the distances in the tree between the end vertices of the graph edges and the number of graph edges. We consider the problem of computing a minimum average stretch spanning tree in polygonal 2-trees, a super class of 2-connected outerplanar graphs. For a polygonal 2-tree on n vertices, we present an algorithm to compute a minimum average stretch spanning tree in O(n logn) time. This also finds a minimum fundamental cycle basis in polygonal 2-trees.

Keywords

Outerplanar Graph External Edge Fundamental Cycle Unweighted Graph Average Stretch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and its application to the k-server problem. SIAM J. of Comput. 24, 78–100 (1995)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)Google Scholar
  4. 4.
    Deo, N., Prabhu, G., Krishnamoorthy, M.S.: Algorithms for generating fundamental cycles in a graph. ACM Transactions on Math. Software 8, 26–42 (1982)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Diestel, R.: Graph Theory, 4th edn. Springer (2010)Google Scholar
  6. 6.
    Ducharme, M., Labelle, G., Lamathe, C., Leroux, P.: A classification of outerplanar k-gonal 2-trees. In: 19th Intern. Conf. on FPSAC (2007) (appeared as Poster.)Google Scholar
  7. 7.
    Emek, Y.: k-outerplanar graphs, planar duality, and low stretch spanning trees. Algorithmica 61(1), 141–160 (2011)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Emek, Y., Peleg, D.: A tight upper bound on the probabilistic embedding of series-parallel graphs. SIAM J. Discrete Math. 23(4), 1827–1841 (2009)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Eppstein, D.: Parallel recognition of series-parallel graphs. Inf. Comput. 98(1), 41–55 (1992)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Fowler, T., Gessel, I., Labelle, G., Leroux, P.: The specification of 2-trees. Advances in Applied Mathematics 28(2), 145–168 (2002)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Galbiati, G., Rizzi, R., Amaldi, E.: On the approximability of the minimum strictly fundamental cycle basis problem. Discrete Appl. Math. 159(4), 187–200 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Hubicka, E., Syso, M.: Minimal bases of cycles of a graph. In: Recent Advances in Graph Theory, Second Czech Symposium in Graph Theory, pp. 283–293. Academia, Prague (1975)Google Scholar
  13. 13.
    Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T., Zweig, K.A.: Cycle bases in graphs characterization, algorithms, complexity, and applications. Computer Science Review 3(4), 199–243 (2009)CrossRefGoogle Scholar
  14. 14.
    Koh, K.M., Teo, C.P.: Chromaticity of series-parallel graphs. Discrete Mathematics 154(1-3), 289–295 (1996)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Labelle, G., Lamathe, C., Leroux, P.: Labelled and unlabelled enumeration of k-gonal 2-trees. J. Comb. Theory, Ser. A 106(2), 193–219 (2004)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Liebchen, C., Wünsch, G.: The zoo of tree spanner problems. Discrete Appl. Math. 156, 569–587 (2008)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Omoomi, B., Peng, Y.-H.: Chromatic equivalence classes of certain generalized polygon trees, iii. Discrete Mathematics 271(1-3), 223–234 (2003)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Peng, Y.-H., Little, C.H.C., Teo, K.L., Wang, H.: Chromatic equivalence classes of certain generalized polygon trees. Discrete Mathematics 172(1-3), 103–114 (1997)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Ramachandran, V.: Parallel Open Ear Decomposition with Applications to Graph Biconnectivity and Triconnectivity. Morgan Kaufmann (1992)Google Scholar
  20. 20.
    West, D.B.: Introduction to graph theory, 2nd edn. Prentice-Hall (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • N. S. Narayanaswamy
    • 1
  • G. Ramakrishna
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology MadrasIndia

Personalised recommendations