STRATI 2013 pp 475-480 | Cite as

Volcanism, Relative Sea-Level Change, and the Stratigraphic Record: An Oligocene Example

  • Andrea di CapuaEmail author
  • Gianluca Groppelli
  • Giovanni Vezzoli
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)


Volcanoes are revealed to be complex and dynamically evolving edifices, characterized by both eruptive activity and episodes of instability that can periodically cause catastrophic debris avalanches and huge debris flows (Mcguire 1996). Moreover, the geodynamic context of their locations can interact with the development of different sedimentary systems (Le Friant et al. 2011; Sisavath et al. 2011) as well as with the emplacement of different processes (Watt et al. 2012; Sisavath et al. 2012; Crutchley et al. 2013), dramatically influencing the stratigraphic record of the surrounding basins. However, the role of climatic changes in depositional processes is still debated (KrastelS and Jacobs 2001; Quidelleur et al. 2008; Sisavath et al. 2012). Here, we present an example from the Oligocene fore deep of the Alps, now contained in the Northern Apennines, where the interaction between volcanic activity and relative sea-level changes has been recorded in the Val d’Aveto Formation, with an age 32–29 Ma (Elter et al. 1999; Catanzariti et al. 2009). Two volcaniclastic members (the lowest conglomeratic, containing Oligocene andesitic clasts (Mattioli 1997), the uppermost medium to coarse arenitic with polygenic conglomerate lenses in it) are found above a carbonate to siliciclastic member (pelitic and fine to very fine arenitic, with conglomerate lenses on top), and these units show how the onset of active volcanism in the sediment source area interacts with the sediment supply during a regressive phase. We performed detailed fieldwork, conducted pebble counts on 11 conglomerate beds, examined two thin-sections of micro conglomerate, integrated the data with information from the literature (Elter et al. 1999), and compared the results to the Oligocene palaeoclimate record and global sea-level curve (Haq et al. 1987; Sissingh 2001; Miller et al. 2005; Pälike et al. 2006). This allowed us to recognize an important increase in the grain size of single pebbles and of the arenitic matrix, from the siliciclastic to the volcaniclastic members, with a large increase of volcanic rock fragments in the latter (Elter et al. 1999). Moreover, this increase of volcanic pebbles is not constant. These results seem to emphasize the role of an active, synsedimentary volcanism in a source area, even in relation with the first regressive stage: an increase of sediment production, strongly dependent on grain size; sediment production independent of relative sea-level changes; and a general increase of grain size due to the increase of energy in sediment transport. This work is still in progress. The analysis of the Alpine Oligocene record in both the Molassa and fore deep basins, and its comparison with the Jurassic Cañadón Asfalto Basin (Patagonia, Argentina) and datasets of modern systems, will allow us to improve these preliminary, local conclusions regarding sediment production and depositional processes in volcanic-related basins.


Active volcanism Depositional processes Sea-level changes Sediment production Sediment budget 


  1. Catanzariti, R., Feroni, A. C., Ottria, G., & Lev, N. (2009). The contribution of calcareous nonnofossil biostratigraphy in solving geological problems: The example of the Oligocene–Miocene fore deep of the Northern Appennines (Italy). SEPM Special Publication,93, 309–321.Google Scholar
  2. Crutchley, G. J., Karstens, J., Berndt, C., Talling, P. J., Watt, S. F. L., Vardy, M. E., et al. (2013). Insights into the emplacement dynamics of volcanic landslides from high-resolution 3D seismic data acquired offshore Montserrat, Lesser Antilles. Marine Geology,335, 1–15. doi: 10.1016/j.margeo.2012.10.004.CrossRefGoogle Scholar
  3. Elter, P., Catanzariti, R., Ghiselli, F., Marroni, M., Molli, G., Ottria, G., et al. (1999). L’Unità Aveto (Appennino settentrionale): caratteristiche litostratigrafiche, biostratigrafia, petrografia delle areniti ed assetto strutturale. Bollettino della Società Geologica Italiana,118, 41–63.Google Scholar
  4. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the triassic. Science (New York, N.Y.), 235(4793), 1156–1167. doi: 10.1126/science.235.4793.1156.CrossRefGoogle Scholar
  5. Krastel, S., Schmincke, H.-U., Jacobs, C. L. (2001). Formation of submarine canyons on the flanks of the Canary Islands. Geo-Marine Letters20(3), 160–167. doi: 10.1007/s003670000049.CrossRefGoogle Scholar
  6. Le Friant, A., Lebas, E., Clémant, V., Boudon, G., Deplus, C., De Voogd, B., et al. (2011). A new model for the evolution of La Réunion volcanic complex from complete marine geophysical surveys. Geophysical Research Letters,38(9), n/a–n/a. doi: 10.1029/2011GL047489.CrossRefGoogle Scholar
  7. Mattioli, M. (1997). Vulcanismo Terziario dell’Appennino settentrionale; evidenze da clasti andesitici nell’Unità Canetolo e corpi vulcanici sepolti (p. 140). PhD thesis, University of Parma.Google Scholar
  8. Mattioli, M., Lustrino, M., Ronca, S., & Bianchini, G. (2012). Alpine subduction imprint in Apennine volcaniclastic rocks. Geochemical–petrographic constraints and geodynamic implications from early Oligocene Aveto-Petrignacola formation (N Italy). Lithos,134–135, 201–220. doi: 10.1016/j.lithos.2011.12.017.CrossRefGoogle Scholar
  9. Mcguire, W. J. (1996). Volcano instability: A review of contemporary themes. Geological Society, London, Special Publications,110(1), 1–23. doi: 10.1144/GSL.SP.1996.110.01.01.CrossRefGoogle Scholar
  10. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., et al. (2005). The Phanerozoic record of global sea-level change. Science (New York, N.Y.),310(5752), 1293–1298. doi: 10.1126/science.1116412.CrossRefGoogle Scholar
  11. Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., et al. (2006). The heartbeat of the Oligocene climate system. Science (New York, N.Y.),314(5807), 1894–1898. doi: 10.1126/science.1133822.CrossRefGoogle Scholar
  12. Quidelleur, X., Hildenbrand, A., & Samper, A. (2008). Causal link between Quaternary paleoclimatic changes and volcanic islands evolution. Geophysical Research Letters,35(2), L02303. doi: 10.1029/2007GL031849.CrossRefGoogle Scholar
  13. Sisavath, E., Babonneau, N., Saint-Ange, F., Bachèlery, P., Jorry, S. J., Deplus, C., et al. (2011). Morphology and sedimentary architecture of a modern volcaniclastic turbidite system: The Cilaos fan, offshore La Réunion Island. Marine Geology,288(1–4), 1–17. doi: 10.1016/j.margeo.2011.06.011.CrossRefGoogle Scholar
  14. Sisavath, E., Mazuel, A., Jorry, S. J., Babonneau, N., Bachèlery, P., De Voogd, B., et al. (2012). Processes controlling a volcaniclastic turbiditic system during the last climatic cycle: Example of the Cilaos deep-sea fan, offshore La Réunion Island. Sedimentary Geology,281, 180–193. doi: 10.1016/j.sedgeo.2012.09.010.CrossRefGoogle Scholar
  15. Sissingh, W. (2001). Tectonostratigraphy of the west alpine foreland: Correlation of tertiary sedimentary sequences, changes in eustatic sea-level and stress regimes. Tectonophysics,333(3–4), 361–400. doi: 10.1016/S0040-1951(01)00020-8.CrossRefGoogle Scholar
  16. Watt, S. F. L., Talling, P. J., Vardy, M. E., Masson, D. G., Henstock, T. J., Hühnerbach, V., et al. (2012). Widespread and progressive seafloor-sediment failure following volcanic debris avalanche emplacement: Landslide dynamics and timing offshore Montserrat, Lesser Antilles. Marine Geology,323–325, 69–94. doi: 10.1016/j.margeo.2012.08.002.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrea di Capua
    • 1
    Email author
  • Gianluca Groppelli
    • 2
  • Giovanni Vezzoli
    • 1
  1. 1.Università degli Studi di Milano-BicoccaMilanItaly
  2. 2.CNR—Istituto per la Dinamica dei Processi AmbientaliMilanItaly

Personalised recommendations