Advertisement

STRATI 2013 pp 209-212 | Cite as

Astrochronology of the Valanginian Stage from GSSP Candidates and Hypostratotype

  • Mathieu MartinezEmail author
  • Jean-François Deconinck
  • Pierre Pellenard
  • Stéphane Reboulet
  • Laurent Riquier
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The Valanginian Stage currently displays no radiometric age, which severely hampers palaeoceanographic reconstructions for this time interval. An astrochronology of the Valanginian Stage using the stable 405-kyr eccentricity cycle was performed on biostratigraphically well-calibrated standard sections from the Vocontian Basin (southeastern France). High-resolution gamma-ray spectrometry signals were obtained from orbitally driven marl–limestone alternations from five sections in the basin, and they display the same long-term trends. The spectral analyses present the pervasive record of the 405-kyr eccentricity cycle together with precession, obliquity, and 2.4-Myr eccentricity. Based on the identification of the 405-kyr eccentricity cycle, the duration of the Valanginian Stage is assessed at 5.08 Myr. Since the Weissert Event appears to be ~3 Myr older than the onset of the Paraná–Etendeka Large Igneous Province activity, a link between these events is unlikely. We therefore propose, following Gröcke et al. (2005) and Westermann et al. (2010), that continental organic carbon storage and carbonate platform demise are responsible for the onset of the δ13C positive excursion. In addition, a stronger obliquity control appears in the O. (O.) nicklesi and C. furcillata subzones. This may be linked to the limited production of polar ice suggested for this time interval.

Keywords

Valanginian Astrochronology Gamma-ray spectrometry Weissert event Paraná–Etendeka 

References

  1. Aguirre-Urreta, M. B., Pazos, P. J., Lazo, D. G., Fanning, C. M., & Litvak, V. D. (2008). First U-Pb SHRIMP age of the hauterivian stage, Neuquén Basin, Argentina. Journal of South American Earth Science,26(1), 91–99.CrossRefGoogle Scholar
  2. Cotillon, P. (1987). Bed-scale cyclicity of pelagic cretaceous successions as a result of world-wide control. Marine Geology,78(1–2), 109–123.CrossRefGoogle Scholar
  3. Erba, E., Bartolini, A., & Larson, R. L. (2004). Valanginian weissert oceanic anoxic event. Geology,32(2), 149–152.CrossRefGoogle Scholar
  4. Giraud, F. Beaufort, L. Cotillon, P. (1995). Periodicities of carbonate cycles in the valanginian of the vocontian trough: A strong obliquity control. In M. R. House, A. S. Gale (Eds.), Orbital forcing time scales and cyclostratigraphy (Vol. 85) pp 143–164. London: Geology Society Special Publication.CrossRefGoogle Scholar
  5. Gréselle, B. (2007). Impact des variations paléoclimatiques sur la sédimentation carbonatée au valanginien (PhD Thèse, Université Claude Bernard Lyon 1. 2007) p.337 (unpublished).Google Scholar
  6. Gréselle, B., & Pittet, B. (2010). Sea-level reconstructions from the peri-vocontian zone (south-east France) point to valanginian glacio-eustasy. Sedimentology,57(7), 1640–1684.CrossRefGoogle Scholar
  7. Gröcke, D. R., Price, G. D., Robinson, S. A., Baraboshkin, E. Y., Mutterlose, J., & Ruffell, A. H. (2005). The upper valanginian (early cretaceous) positive carbon-isotope event recorded in terrestrial plants. Earth and Planetary Science Letters,240(2), 495–509.CrossRefGoogle Scholar
  8. Janasi, V. A., de Freitas, V. A., & Heaman, L. H. (2011). The onset of flood basalt volcanism, northern parana basin, Brazil: A precise U-Pb baddeleyite/zircon age for a chapeco-type dacite. Earth and Planetary Science Letters,302(1–2), 147–153.CrossRefGoogle Scholar
  9. Littler, K., Robinson, S. A., Bown, P. R., Nederbragt, A. J., & Pancost, R. D. (2011). High sea-surface temperatures during the early cretaceous epoch. Nature Geoscience,4, 169–172.CrossRefGoogle Scholar
  10. Mahoney, J. J., Duncan, R. A., Tejada, M. L. G., Sager, W. W., & Bralower, T. J. (2005). Jurassic-cretaceous boundary age and mid-ocean-ridge-type mantle source for shatsky rise. Geology,33(3), 185–188.CrossRefGoogle Scholar
  11. McArthur, J. M., Janssen, N. M. M., Reboulet, S., Leng, M. J., Thirwall, M. F., & van de Schootbrugge, B. (2007). Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, δ18O, δ13C, 87Sr/86Sr): The early cretaceous (berriasian, valanginian, hauterivian). Palaeogeography Palaeoecology,248(3–4), 391–410.CrossRefGoogle Scholar
  12. Price, G. D., & Nunn, E. V. (2010). Valanginian isotope variation in glendonites and belemnites from Arctic svalbard: Transient glacial temperatures during the cretaceous greenhouse. Geology,38(3), 251–254.CrossRefGoogle Scholar
  13. Reboulet, S., & Atrops, F. (1995). Rôle du climat sur les migrations et la composition des peuplements d’ammonites du Valanginien supérieur du bassin vocontien (S-E de la France). Geobios, Mémoire spécial,18, 357–365.CrossRefGoogle Scholar
  14. Reboulet, S., Rawson, P. F., Moreno-Bedmar, J. A., et al. (2011). Report on the 4th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the “Kilian Group” (Dijon, France, 30th August 2010). Cretaceous Research,32(6), 786–793.CrossRefGoogle Scholar
  15. Sprenger, A., & Ten Kate, W. G. (1993). Orbital forcing of calcilutite–marl cycles in southeast Spain and an estimate for the duration of the berriasian stage. Geological Society of America Bulletin,105(6), 807–818.CrossRefGoogle Scholar
  16. Sprovieri, S., Coccioni, R., Lirer, F., Pelosi, N., & Lozar, F. (2006). Orbital tuning of a lower Cretaceous composite record (Maiolica Formation, central Italy). Paleoceanography,21(4), PA4212.Google Scholar
  17. Walter, B. (1991). Changement de faunes de bryozoaires dans le Valanginien supérieur des Alpes-de-Haute-Provence. Parallélisme avec la crise observée dans le Jura à la même époque. Cretaceous Research,12(6), 597–606.CrossRefGoogle Scholar
  18. Wan, X., Scott, R., Chen, W., Gao, L., & Zhang, Y. (2011). Early cretaceous stratigraphy and SHRIMP U-Pb age constrain the valanginian-hauterivian boundary in southern tibet. Lethaia,44(2), 231–244.CrossRefGoogle Scholar
  19. Westermann, S., Föllmi, K. B., Adatte, T., Matera, V., Schnyder, J., Fleitmann, D., et al. (2010). The Valanginian δ13C excursion may not be an expression of a global oceanic anoxic event. Earth and Planetary Science Letters,290(1–2), 118–131.CrossRefGoogle Scholar
  20. Wortmann, U. G., & Weissert, H. (2000). Tying platform drowning to perturbations of the global carbon cycle with a δ13COrg-curve from the Valanginian of DSDP Site 416. Terra Nova,12(6), 289–294.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mathieu Martinez
    • 1
    Email author
  • Jean-François Deconinck
    • 1
  • Pierre Pellenard
    • 1
  • Stéphane Reboulet
    • 2
  • Laurent Riquier
    • 1
    • 3
  1. 1.UMR/CNRS 6282 BiogéosciencesUniversité de BourgogneDijonFrance
  2. 2.UMR/CNRS 5276 Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Observatoire des Sciences de l’Univers de LyonUniversité Claude Bernard Lyon 1Villeurbanne CedexFrance
  3. 3.UMR/CNRS 7193 ISTeP: Institut des Sciences de la Terre de ParisUniversité Paris VIParis Cedex 05France

Personalised recommendations