STRATI 2013 pp 201-203 | Cite as

A 65-Myr-Long Astronomical Time Scale for the Mesozoic Deep-Sea Sequence (Inuyama, Japan): Implications for the Triassic–Jurassic Time Scale

  • Masayuki IkedaEmail author
  • Ryuji Tada
  • Hironobu Sakuma
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)


The astronomical time scale (ATS) for geological records is nearly complete for Cenozoic strata, and attempts have been made to extend the scale to Mesozoic and older ages. However, construction of the Mesozoic ATS is hampered by the chaotic behaviour of solar planets and the lack of a continuous pelagic sequence for the early Mesozoic due to the subduction of the ocean floor. Here, we present the ATS constructed from the early Mesozoic deep-sea sequence of the Inuyama area, central Japan. The sedimentary rhythms of bedded chert display a full range of climatic precession-related cycles: a ~20-kyr cycle as a chert–shale couplet and ~100-kyr, 405-kyr, ~2000–4000-kyr, and ~10,000-kyr (~10-Myr) cycles as chert bed thickness variations, which principally reflect changes in the burial rate of biogenic silica, most likely due to changes in silicate weathering rates. The newly established ATS tuned by the 405-kyr cycle and anchored at the end-Triassic radiolarian extinction level gives ages consistent with radiometric ages projected onto the sequence using biostratigraphy. Thus, the cyclostratigraphy of the Inuyama bedded chert provides numerical ages for the Triassic to Lower Jurassic stage boundaries, constraints on the chaotic behaviour of solar planets, and information on biogeochemical silica-cycle dynamics.


Milankovitch cycle Permian–Triassic Chert Chaos Nutrients Weathering 


  1. Carter, E. S., & Hori, R. S. (2005). Global correlation of the radiolarian faunal change across the Triassic-Jurassic boundary. Canadian Journal of Earth Sciences,42, 777–790.CrossRefGoogle Scholar
  2. Hinnov, L. A., & Hilgen, F. J. (2012). Cyclostratigraphy and astrochronology. In F. M. Gradstein et al. (Eds.), A geologic time scale 2012 (pp. 63–83). Cambridge University Press, Cambridge.Google Scholar
  3. Hori, S. R., Cho, C., & Umeda, H. (1993). Origin of cyclicity in Triassic-Jurassic radiolarian bedded cherts of the Mino accretionary complex from Japan. The Island Arc,3, 170–180.CrossRefGoogle Scholar
  4. Ikeda, M., Tada, R., & Sakuma, H. (2010). Astronomical cycle origin of bedded chert; middle Triassic bedded chert sequence, Inuyama, Japan. Earth and Planetary Science Letters,297, 369–378.CrossRefGoogle Scholar
  5. Ikeda, M., & Tada, R. (2013). Long period astronomical cycles from the Triassic to Jurassic bedded chert sequence (Inuyama, Japan); Geologic evidences for the chaotic behavior of Solar Planets. Earth, Planets, and Space, 65, 1–10)CrossRefGoogle Scholar
  6. Laskar, J., Fienga, A., Gastineau, M., & Manche, H. (2011a). La2010: A new orbital solution for the long term motion of the Earth. Astronomy and Astrophysics,532, A89. doi: 10.1051/0004-6361/201116836.CrossRefGoogle Scholar
  7. Laskar, J., Gastineau, M., Delisle, J.-B., Farres, A., & Fienga, A. (2011b). Strong chaos induced by close encounters with Ceres and Vesta. Astronomy and Astrophysics,532, L4. doi: 10.1051/0004-6361/201117504.CrossRefGoogle Scholar
  8. Ogg, J. G. (2012). The Triassic period. In F. M. Gradstein et al. (Eds.), A geologic time scale 2012 (pp. 681–730). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  9. Ogg, J. G., & Hinnov, L. A. (2012). The Jurassic period. In F. M. Gradstein et al. (Eds.), A geologic time scale 2012 (pp. 731–791). Cambridge University Press, Cambridge.Google Scholar
  10. Onoue, T., Sato, H., Nakamura, T., Noguchi, T., Hidaka, Y., Shirai, N., et al. (2012). Deep-sea record of impact apparently unrelated to mass extinction in the Late Triassic. Journal oftheProceedings of the National Academy of Sciences,109(47), 19134–19139.Google Scholar
  11. Sato, H., & Onoue, T. (2010). Discovery of Ni-rich spinels in Upper Triassic chert of the Mino Terrane, central Japan. Journal of the Geological Society of Japan,116(10), 575–578.CrossRefGoogle Scholar
  12. Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., & Blackburn, T. (2010). Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100000-year level. Geology,38, 387–390.CrossRefGoogle Scholar
  13. Sugiyama, K. (1997). Triassic and Lower Jurassic radiolarian biostratigraphy in the siliceous claystone and bedded chert units of the southeastern Mino Terrane, Central Japan. Bulletin of the Mizunami Fossil Museum,24, 79–193.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Ehime UniversityMatsuyamaJapan
  2. 2.University of TokyoTokyoJapan
  3. 3.JX Nippon Oil and Gas Exploration CorporationTokyoJapan

Personalised recommendations