Advertisement

STRATI 2013 pp 191-195 | Cite as

Settling the Danian Astronomical Time Scale: A Prospective Global Unit Stratotype at Zumaia, Basque Basin

  • Jaume Dinarès-TurellEmail author
  • Thomas Westerhold
  • Victoriano Pujalte
  • Ursula Röhl
  • Dick Kroon
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

We present a new Danian correlation framework between the land-based Zumaia and Sopelana sections from the Basque Basin and marine-based sections drilled during ODP Legs 198 (Shatsky Rise, North Pacific) and 208 (Walvis Ridge, South Atlantic) that reconciles magnetostratigraphy and the short and long eccentricity cycle patterns among the records. A new whole-rock δ13C isotope record at Zumaia is compared to that of Site 1262. This allows the question of whether the Danian consists of 10 or 11 consecutive 405-kyr eccentricity cycles to be tested. The new consistent stratigraphic framework enables accurate estimates to be made of ages for magnetostratigraphic boundaries, bioevents, and sedimentation rates. Low sedimentation rates appear common in all records in the mid-Danian interval along the upper part of chron C28n, including conspicuous condensed intervals in some of the oceanic records that in the past have hampered the proper identification of cycles. Notably, we challenge the correlation to the Pacific Sites 1209–1210 that were offset by as much as one 405-kyr cycle in previous interpretations (i.e., the Fasciculithus spp. LO, which approximates the Danian–Selandian boundary, and the TC27n event were at odds between oceans in the interpretation of Hilgen et al. 2010). Finally, we envisage that the Zumaia section, which already hosts the Selandian GSSP, could serve as the global Danian stratotype.

Keywords

Orbital tuning Magnetostratigraphy Cyclostratigraphy ODP 

Notes

Acknowledgments

The research was funded by project CGL2011-23770 of the Spanish Min. de Economía y Competividad. JDT acknowledges a sabbatical grant from the Spanish Min. de Educación. The study used samples and data provided by the Integrated Ocean Drilling Program (IODP). The Deutsche Forschungsge-meinschaft (DFG), MARUM—Center for Marine Environmental Sciences, University of Bremen, provided financial support.

References

  1. Channell, J. E. T., Hodell, D. A., Singer, B. S., & Xuan, C. (2010). Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama–Brunhes boundary and late Matuyama Chron. Geochemistry, Geophysics, Geosystems (G3), 11, Q0AA12. doi: 10.1029/2010GC003203.CrossRefGoogle Scholar
  2. Dinarès-Turell, J., Baceta, J. I., Pujalte, V., Orue-Etxebarria, X., Bernaola, G., & Lorito, S. (2003). Untangling the Palaeocene climatic rhythm; an astronomically calibrated early Palaeocene magnetostratigraphy and biostratigraphy at Zumaia (Basque Basin, northern Spain). Earth and Planetary Science Letters,216, 483–500.CrossRefGoogle Scholar
  3. Dinarès-Turell, J., Baceta, J. I., Bernaola, G., Orue-Etxebarria, X., & Pujalte, V. (2007). Closing the Mid-Palaeocene gap: toward a complete astronomically tuned Palaeocene Epoch and Selandian and Thanetian GSSPs at Zumaia (Basque Basin, W Pyrenees). Earth and Planetary Science Letters,262, 450–467.CrossRefGoogle Scholar
  4. Dinarès-Turell, J., Stoykova, K., Baceta, J. I., Ivanov, M., & Pujalte, V. (2010). High-resolution intra- and interbasinal correlation of the Danian-Selandian transition (Early Paleocene): The Bjala section (Bulgaria) and the Selandian GSSP at Zumaia (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology,297, 511–533.CrossRefGoogle Scholar
  5. Dinarès-Turell, J., Pujalte, V., Stoykova, K., Baceta, J. I., & Ivanov, M. (2012). The Paleocene “top chron C27n” transient greenhouse episode: evidences from marine pelagic Atlantic and peri-Tethyan sections. Terra Nova24, 477–486. doi:  10.1111/j.1365-3121.2012.01086.x. CrossRefGoogle Scholar
  6. Dinarès-Turell, J., Pujalte, V., Stoykova, K., & Elorza, J. (2013). Detailed correlation and astronomical forcing across the Upper Maastrichtian succession from the Basque Basin. Boletin Geologico y Minero,124, 253–282.Google Scholar
  7. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2012). The geological time scale 2012 (p. 1176). Boston: Elsevier.Google Scholar
  8. Herbert, T. D. (1999). Towards a composite orbital chronology for the Late Cretaceous and Early Paleogene GPTS. In N. J. Shackleton, I. N. McCave, & Weedon, G. P. (Eds.), The Philosophical Transactions of the Royal Society of London. A, 357, 1891–1905.Google Scholar
  9. Hilgen, F., Brinkhuis, H., & Zachariasse, J. W. (2006). Unit stratotypes for global stages: The Neogene perspective. Earth-Science Reviews,74, 113–125.Google Scholar
  10. Hilgen, F. J., Kuiper, K. F., & Lourens, L. J. (2010). Evaluation of the astronomical time scale for the Paleocene and earliest Eocene. Earth and Planetary Science Letters,300, 139–151. doi: 10.1016/j.epsl.2010.09.044.CrossRefGoogle Scholar
  11. Kroon, D., Zachos, J. C., & Leg 208 Scientific Party. (2007). Leg 208 synthesis: Cenozoic climate cycles and excursions. In D. Kroon, J. C. Zachos, C. Richter (Eds.), Proceedings of the Ocean Drilling Program: Scientific Results, 208: College Station, TX (Ocean Drilling Program), 1–55. doi: 10.2973/odp.proc.sr.208.201.2007.Google Scholar
  12. Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., & Wijbrans, J. R. (2008). Synchronizing rock clocks of Earth history. Science,320, 500–504.CrossRefGoogle Scholar
  13. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., & Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics,428, 261–285.CrossRefGoogle Scholar
  14. Laskar, J., Fienga, A., Gastineau, M., & Manche, H. (2011). La2010: A new orbital solution for the long term motion of the Earth. Astronomy and Astrophysics,532, A89.CrossRefGoogle Scholar
  15. Röhl, U., Ogg, J. G., Geib, T. L., & Wefer, G. (2001). Astronomical calibration of the Danian time scale. In D. Kroon, R. D. Norris, & A. Klaus (Eds.), Western North Atlantic Palaeogene and Cretaceous Palaeoceanography (pp. 163–183). London: Geological Society Special Publications.Google Scholar
  16. Ten Kate, W. G., & Sprenger, A. (1993). Orbital cyclicities above and below the Cretaceous/Paleogene boundary at Zumaya (N Spain), Agost and Relleu (SE Spain). Sedimentary Geology,87, 69–101.CrossRefGoogle Scholar
  17. Varadi, F., Runnegar, B., & Ghil, M. (2003). Successive refinements in long-term integrations of planetary orbits. Astrophysical Journal,592, 620–630.CrossRefGoogle Scholar
  18. Westerhold, T., Roehl, U., Raffi, I., Forniaciari, E., Monechi, S., Reale, V., et al. (2008). Astronomical calibration of the Paleocene time. Palaeogeography, Palaeoclimatology, Palaeoecology,257, 377–403.CrossRefGoogle Scholar
  19. Westerhold, T., Röhl, U., & Laskar, J. (2012). Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochemistry, Geophysics, Geosystems,13, Q06015. doi: 10.1029/2012GC004096.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jaume Dinarès-Turell
    • 1
    Email author
  • Thomas Westerhold
    • 2
  • Victoriano Pujalte
    • 3
  • Ursula Röhl
    • 2
  • Dick Kroon
    • 4
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly
  2. 2.MARUM—Center for Marine Environmental Sciences, University of BremenBremenGermany
  3. 3.Department of Stratigraphy and PaleontologyUniversity of the Basque Country, UPV/EHUBilbaoSpain
  4. 4.School of GeoSciences, Grant Institute, University of EdinburghEdinburghUK

Personalised recommendations