Advertisement

STRATI 2013 pp 175-179 | Cite as

Astronomical Calibration of the Valanginian “Weissert” Episode: The Orpierre Marl–Limestone Succession (Vocontian Basin, Southeastern France)

  • Guillaume CharbonnierEmail author
  • Slah Boulila
  • Silvia Gardin
  • Stéphanie Duchamp-Alphonse
  • Thierry Adatte
  • Jorge E. Spangenberg
  • Karl B. Föllmi
  • Christophe Colin
  • Bruno Galbrun
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

A high-resolution biostratigraphic (calcareous nannofossils and calpionellids), chemostratigraphic (C and O isotopes), and cyclostratigraphic (magnetic susceptibility) study was performed on the marl–limestone alternations of the upper BerriasianValanginian Orpierre section, deposited in the hemipelagic setting of the Vocontian Basin (southeastern France). The main aims of this study were to demonstrate that orbital forcing was the primary driver of the formation of the marl–limestone alternations and to estimate the duration of the Valanginian “Weissert” episode. The detailed calcareous nannofossil biochronology allowed upper Berriasianlower Hauterivian Tethyan standard biozones and subbiozones to be recognised. The general trends of the δ13C curve and the major positive C isotope excursion (amplitude of 1.8 ‰) recorded at the Orpierre section are similar to those for other sections worldwide. Spectral analysis applied to high-resolution magnetic susceptibility (MS) variations, coupled with the frequency ratio method, reveals a strong cyclic pattern related to Earth’s orbital parameters (precession, obliquity, and eccentricity). The 405-kyr eccentricity cycle is prominent in the MS signal and has been used as a geochronometer to temporally calibrate the section. Such orbital calibration provided a minimum duration of 4.4 Myr for the Valanginian Stage. The duration of the Weissert episode, as defined by the δ13C curve, is estimated at 2.08 Myr. This duration is consistent with that obtained from the composite section in the Umbria Marche Basin (~2.3 Myr), but contrasts with the estimate (1.5 Myr) proposed from the composite section of the Vocontian Basin.

Keywords

Positive carbon isotope excursion Magnetic susceptibility Cyclostratigraphy Valanginian calcareous nannofossils Vocontian Basin 

References

  1. Dercourt, J., Ricou, L. E., & Vrielynck, B. (Eds.). (1993). Atlas Tethys paleoenvironmental maps (p. 307). Paris: Gauthier-Villars.Google Scholar
  2. Duchamp-Alphonse, S., Fiet, N., Adatte, T., & Pagel, M. (2011). Climate and sea-level variations along the northwestern Tethyan margin during the Valanginian C-isotope excursion: Mineralogical evidence from the Vocontian basin (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology,302, 243–254.CrossRefGoogle Scholar
  3. Duchamp-Alphonse, S., Gardin, S., Fiet, N., Bartolini, A. C., Blamart, D., & Pagel, M. (2007). Fertilization of the northwestern Tethys (Vocontian basin, SE France) during the Valanginian carbon isotope perturbation: Evidence from calcareous nannofossils and trace element data. Palaeogeography, Palaeoclimatology, Palaeoecology,243, 132–151.CrossRefGoogle Scholar
  4. Erba, E., Bartolini, A. C., & Larson, R. L. (2004). Valanginian Weissert oceanic anoxic event. Geology,32, 149–152.CrossRefGoogle Scholar
  5. Föllmi, K. B., Weissert, H., Bisping, M., & Funk, H. (1994). Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin. Geological Society of American Bulletin,106, 729–746.CrossRefGoogle Scholar
  6. Gréselle, B., Pittet, B., Mattioli, E., Joachimski, M., Barbarin, N., Riquier, L., et al. (2011). The Valanginian isotope event: A complex suite of palaeoenvironmental perturbations. Palaeogeography, Palaeoclimatology, Palaeoecology,306, 41–57.CrossRefGoogle Scholar
  7. Lini, A., Weissert, H., & Erba, E. (1992). The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Global Change Special Issue: Terra Nova,4, 374–384.Google Scholar
  8. Moullade, M. (1966). Etude stratigraphique et micropaléontologique du Crétacé inférieur de la “fosse vocontienne”. Documents des Laboratoires de Géologie de la Faculté des Sciences de Lyon, 15, 369.Google Scholar
  9. Ogg, J. G., & Hinnov, L. A. (2007). Cyclostratigraphy and the astronomical time scale. Stratigraphy,4, 239–251.Google Scholar
  10. Sprovieri, M., Coccioni, R., Lirer, F., Pelosi, N., & Lozar, F. (2006). Orbital tuning of a lower cretaceous composite record (Maiolica Formation, central Italy). Paleoceanography,21, PA4212.Google Scholar
  11. Weissert, H. (1989). C-isotope stratigraphy, a monitor of palaeoenvironmental change: A case study from the early Cretaceous. Surveys in Geophysics,10, 1–61.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Guillaume Charbonnier
    • 1
    Email author
  • Slah Boulila
    • 2
  • Silvia Gardin
    • 3
  • Stéphanie Duchamp-Alphonse
    • 1
  • Thierry Adatte
    • 4
  • Jorge E. Spangenberg
    • 4
  • Karl B. Föllmi
    • 4
  • Christophe Colin
    • 1
  • Bruno Galbrun
    • 2
  1. 1.UMR CNRS 8148 IDES, Interactions et Dynamique des Environnements de Surface, Université Paris Sud XIOrsayFrance
  2. 2.UMR-CNRS 7193 ISTeP, Institut des Sciences de la Terre-Paris, Université Pierre et Marie CurieParis CEDEX 5France
  3. 3.UMR-CNRS 7072 CR2P, Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, Université Pierre et Marie CurieParis CEDEX 5France
  4. 4.Institut des Sciences de la Terre, Quartier UNIL-MoulineLausanneSwitzerland

Personalised recommendations