STRATI 2013 pp 159-162 | Cite as

Rapid Warming at the PETM and Its Influence on Vegetation in Denmark

  • Pi Suhr WillumsenEmail author
  • Bo Pagh Schultz
  • Rene Sylvester
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)


Lowermost Eocene expanded marine sedimentary successions in Denmark are of global chronostratigraphic significance, due to the excellently preserved terrestrial and marine fossil assemblages, combined with a number of radiometrically dated ash layers. A detailed study of vegetation changes across the Palaeocene–Eocene Thermal Maximum (PETM) interval have not yet been carried out, nor has the microflora (e.g., spores and pollen) been related to existing macrofloral remains (e.g., seeds and leaves) stored in Danish Museums. This palynological research project on vegetation changes across the PETM interval is significant because there are extremely few PETM vegetation records where a complete, highresolution plant response to this transient event can be examined. Herein, we present preliminary microflora results from an expanded marine PETM record obtained from the Østerrenden drill core (DGI 83101), located in Store Bælt, Denmark. This preliminary study reveals that a distinct microflora change correlates with the Carbon Isotope Excursion (CIE) in the Østerrenden drill core, including a change from low to high diversity across the Palaeocene–Eocene boundary. The Palaeocene assemblages comprise a high relative abundance of Inaperturopollenites spp. (taxodiaceae), but above the stratigraphic level corresponding to the onset of the CIE event this Palaeocene assemblage type is replaced by species such as Caryapollenitescirculus, Platycaryapollenites platycaryoides, and Tricolpopollenites librarensis. These typical early Eocene pollen species originated from ancestors of Juglandaceae (walnut) and Fagus (beech) families. Palaeotropical floral elements such as palm pollen (Arecipites spp.) and angiosperm pollen from Anacolosa spp. (Olacaceae) also occur for the first time in the basal Eocene part of the Østerrenden drill core. An increased abundance of pollen typical of wet lowland areas, such as Sparganiaceaepollenites spp. (Typhaceae), is also observed, indicating a change in the hydrological regime towards increased seasonality during the earliest Eocene.


Palynology Spores and pollen PETM vegetation Palaeocene–Eocene boundary Denmark 



C. Heilmann–Clausen of Aarhus University is thanked for initiating this project and for providing the palynological slides from the Østerrenden drill core (DGI 83101).


  1. Collinson, M., Steart, C. C., Harrington, G. J., Hooker, J. J., Scott, A. C., Aallen, L. O., et al. (2009). Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Paleocene-Eocene thermal maximum at Cobham, Southern England. Grana,48, 38–66.CrossRefGoogle Scholar
  2. Heilmann–Clausen, C. (1982). The Paleocene-Eocene boundary in Denmark. Newsletters on Stratigraphy,11, 55–63.CrossRefGoogle Scholar
  3. Heilmann–Clausen, C., & Schmitz, B. (2000). The late Paleocene maximum δ13C excursion in Denmark? Geologiska Föreningen i Stockholm Förhandlingar,122, 70.Google Scholar
  4. Kender, S., Stephenson, M. H., Riding, J. B., Leng, M. J., Knox, R. Wo′B., Peck, V. L., et al. (2012). Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition. Earth and Planetary Science Letters, 353–354, 108–120.CrossRefGoogle Scholar
  5. Laursen, G. V., & King, C. (2000). Preliminary results of a foraminiferal analysis of a core from Østerrende, Denmark. Geologiska Föreningen i Stockholm Förhandlingar,122, 92.Google Scholar
  6. Mcinerney, F. A., & Wing, S. L. (2011). The Paleocene-Eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences,39, 489–516.CrossRefGoogle Scholar
  7. Nielsen, O. B., & Heilmann–Clausen, C. (1988). Palaeogene volcanism: The sedimentary record in Denmark. In A. C. Morton, & L. M. Parson (Eds.), Early tertiary volcanism and the opening of the NE Atlantic (Vol. 39, pp. 395–405). London: Geological Special Publication.Google Scholar
  8. Nielsen, O. B., Baumann, J., Deyu, Z., Heilmann–Clausen, C., & Larsen, G. (1986). Tertiary deposits in Store Bælt. Geoskrifter,24, 235–253.Google Scholar
  9. Pedersen, G. K., Pedersen, S. S., Bonde, N., Heilmann–Clausen, C., Larsen, L. M., Lindow, B., et al. (2011). Molerområdets geologi—sedimenter, fossiler, askelag og glacialtektonik. Geologisk Tidsskrift, 41–133, ISSN 13500150. 5.Google Scholar
  10. Schmitz, B., Peukerehrenbrink, B., Heilmann–Clausen, C., Åberg, G., Asaro, F., & Lee, C. T. A. (2004). Basaltic explosive volcanism, but not comet impact, at the Paleocene-Eocene boundary: highresolution chemical and isotopic records from Egypt, Spain and Denmark. Earth and Planetary Science Letters,225, 1–17.CrossRefGoogle Scholar
  11. Schoon PL (2013) Impact of CO2 and pH on the distribution and stable carbon isotopic composition of microbial biomarker lipids (p. 185). Unpublished PhD thesis, Utrecht University, ISBN 97862032996.Google Scholar
  12. Storey, M., Duncan, R. A., & Swisher, C. L. (2007). Paleoecene-Eocene thermal maximum and the opening of the Northeast Atlantic. Science,316, 587–589.CrossRefGoogle Scholar
  13. Westerhold, T., Röhl, U., Laskar, J., Raffi, I., Bowles, J., Lourens, L. J., et al. (2007). On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography22(2), PA2201–PA2219. doi:  10.1029/2006PA001322.CrossRefGoogle Scholar
  14. Westerhold, T., Röhl, U., McCarren, H. K., & Zachos, J. C. (2009). Latest on the absolute age of the Paleocene–Eocene Thermal Maximum (PETM): New insights from exact stratigraphic position of the key ash layers +19 and −17. Earth and Planetary Science Letters,287, 412–419.CrossRefGoogle Scholar
  15. Willumsen, P. S. (1997). En palynologisk undersøgelse af den askeførende Fur Formation (p. 147). Unpublished Cand. Scient. thesis. Aarhus University, Denmark.Google Scholar
  16. Willumsen, P. S. (1998). Terrestrial and marine palynomorph assemblages from the Danish Fur formation, at the Paleocene/Eocene transition. In J. Rey, & F. Rochini (Eds.), La limite PaléoceneÉocène en Europe: Événements et Corrélations. Séance spécialisée. Universite Paul Sabatier—Toulouse III, Laboratorie de Gèologie sèdimentaire et Palèontologie. Strata Sèrie,1(9), 130–133.Google Scholar
  17. Willumsen, P. S. (2004). Palynology of the Lower Eocene deposits of northwest Jutland, Denmark. Bulletin of the Geological Society of Denmark,52, 141–157.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pi Suhr Willumsen
    • 1
    Email author
  • Bo Pagh Schultz
    • 1
  • Rene Sylvester
    • 1
  1. 1.Museum Salling, Fur MuseumFurDenmark

Personalised recommendations