STRATI 2013 pp 143-147 | Cite as

Lower Eocene to Lower Miocene Stratigraphy and Palaeoenvironment of ODP Site 643A, Norwegian Sea

  • Kasia K. ŚliwinskaEmail author
  • Stefan Schouten
  • Karen Dybkjær
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)


The focus of this study is the lower Eocene to lower Miocene succession in ODP Site 643A. The site is located in the Norwegian Sea, at the base of the Outer Vøring Plateau (OVP). We analysed dinocyst assemblages and calculated the relative input of soil organic matter using an organic proxy, the branched/isoprenoid tetraether (BIT) index. Our results suggest outer neritic or oceanic conditions during the deposition of the studied succession, and a progressive submerging of the OVP. A transition from a stratified oxygen-depleted water column into a mixed and well-oxygenated column is observed at ~41.2 Ma and might be connected with subsidence of the OVP. The variations in dinocyst abundance indicate that there was a connected surface water circulation within the Norwegian–Greenlandic Sea in the latest Lutetian. Our record also suggests that there was a good surface water exchange between the Norwegian Sea and the North Sea Basin during the earliest Oligocene and at the Oligocene–Miocene transition.


Dinocysts BIT Palaeoenvironment Palaeogene Norwegian Sea ODP Site 643A 


  1. Eldrett, J. S., Harding, I. C., Firth, J. V., & Roberts, A. P. (2004). Magnetostratigraphic calibration of Eocene-Oligocene dinoflgellate cyst biostratigraphy from the Norwegian-Greenland Sea. Marine Geology,204, 91–127.CrossRefGoogle Scholar
  2. Hopmans, E. C., Weijers, J. W. H., Schefuss, E., Herfort, L., Sinninghe Damsté, J. S., & Schouten, S. (2004). —A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth andPlanetary Science Letters, 224, 107–116.Google Scholar
  3. Huguet, C., de Lange, G. J., Gustafsson, Ö., Middelburg, J. J., Sinninghe Damsté, J. S., & Schouten, S. (2008). Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta 72, 6061–6068.Google Scholar
  4. Manum, S. B., Boulter, M. C., Gunnarsdottir, H., Rangnes, K., & Scholze, A. (1989). Eocene to Miocene palynology of the Norwegian Sea (ODP Leg 104) In O. Eldholm, J. Thiede, E. Taylor et al. (Eds.), Proceedings of the Ocean Drilling Program Science Results104, 611–662.Google Scholar
  5. Katz, M., Cramer, B. S., Toggweiler, J. R., Esmay, G., Liu, C., Miller, K. G., et al. (2011). Impact of antarctic circumpolar current development on late paleogene ocean structure. Science,332, 1076–1079.CrossRefGoogle Scholar
  6. Śliwińska, K. K., & Heilmann-Clausen, C. (2011). Early Oligocene Cooling Reflected by the dinoflagellate cyst Svalbardella cooksoniae. Palaeogeography Palaeoclimatology. Palaeoecology, 305(1–4), 138–149.CrossRefGoogle Scholar
  7. Śliwińska, K. K., Dybkjær, K., Schoon, P. L., Beyer, C., King, C., Schouten, S., & Nielsen, O. B. (under revision).—Paleoclimatic and paleoenvironmental record of the Oligocene–Miocene transition, central Jylland, Denmark, Mar. Geol. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kasia K. Śliwinska
    • 1
    • 2
    Email author
  • Stefan Schouten
    • 2
  • Karen Dybkjær
    • 1
  1. 1.Geological Survey of Denmark and Greenland, GEUSCopenhagen KDenmark
  2. 2.Department of Marine Organic BiogeochemistryNIOZ Royal Netherlands Institute for Sea ResearchDen Burg, TexelThe Netherlands

Personalised recommendations