Advertisement

STRATI 2013 pp 977-980 | Cite as

A Reassessment of the Matuyama–Brunhes Boundary Age Based on the Post-depositional Remanent Magnetization (PDRM) Lock-In Effect for Marine Sediments

  • Yusuke SuganumaEmail author
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The age of the Matuyama–Brunhes (M–B) boundary has been estimated from the astronomical ages of marine sediments and the 40Ar/39Ar ages of volcanic rocks. Although the accepted age for the M–B boundary is 780 ka, recent studies have questioned conventional estimates of the boundary age. In this paper, I present clear evidence for the existence of errors in palaeomagnetic dating due to the effect of the post-depositional remanent magnetization (PDRM) lock-in depth, based on a comparison between previously published marine isotope ages for the M–B boundary and sedimentation rates. These findings indicate that the age of the M–B boundary should be revised to ca. 770–773 ka and that the boundary most likely lies in the late Marine Isotope Stage (MIS) 19 rather than in the middle of MIS 19. This new age for the M–B boundary is consistent with that obtained from the EPICA Dome C ice core using an EDC3 age model. In contrast, an age offset for the M–B boundary is recognized between marine sediments and 40Ar/39Ar ages. To resolve this discrepancy, additional data are required from marine sediments, volcanic rocks, and ice cores.

Keywords

Matuyama–Brunhes boundary Marine sediments 40Ar/39Ar age Post-depositional remanent magnetization (PDRM) Lock-in depth 

References

  1. Dreyfus, G. B., Raisbeck, G. M., Parrenin, F., Jouzel, J., Guyodo, Y., Nomade, S., et al. (2008). An ice core perspective on the age of the Matuyama-Brunhes boundary. Earth and Planetary Science Letters,274, 151–156.CrossRefGoogle Scholar
  2. Horng, C. S., Lee, M. Y., Pälike, H., Wei, K. Y., Liang, W. T., Iizuka, Y., et al. (2002). Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron. Earth, Planets and Space,54, 679–690.CrossRefGoogle Scholar
  3. Horng, C. S., Roberts, A. P., & Liang, W. T. (2003). A 2.14-Myr astronomically tuned record of relative geomagnetic paleointensity from the western Philippine Sea. Journal of Geophysical Research,108, 2059. doi: 10.1029/2001JB001698.
  4. Channell, J. E. T., & Raymo, M. E. (2003). Paleomagnetic record at ODP Site 980 (Feni Drift, Rockall) for the past 1.2 Myrs. Geochemistry, Geophysics, Geosystems,4, 1033. doi:10.29/2002GC000440.Google Scholar
  5. Channell, J. E. T., Hodell, D. A., Xuan, C., Mazaud, A., & Stoner, J. S. (2008). Age calibrated relative paleointensity for the last 1.5 Myr at IODP Site U1308 (North Atlantic). Earth and Planetary Science Letters,274, 59–71.CrossRefGoogle Scholar
  6. Guyodo, Y., & Valet, J. P. (1999). Global changes in intensity of the Earth's magnetic field during the past 800 kyr, Nature, 399, 249–252.CrossRefGoogle Scholar
  7. Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., et al. (2007). Orbital and millennial Antarctic climate variability over the past 800,000 years. Science,317, 793–796.CrossRefGoogle Scholar
  8. Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., & Wijbrans, J. R. (2008). Synchronizing rock clocks of earth history. Science,320, 500–504.CrossRefGoogle Scholar
  9. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography,20, PA1003, doi: 10.1029/2004PA001071.CrossRefGoogle Scholar
  10. Mochizuki, N., Oda, H., Ishizuka, O., Yamazaki, T., & Tsunakawa, H. (2011). Paleointensity variation across the Matuyama-Brunhes polarity transition: Observations from lavas at Punaruu Valley, Tahiti. Journal of Geophysical Research,116, B06103. doi: 10.1029/2010JB008093.CrossRefGoogle Scholar
  11. Raisbeck, G. M., Yiou, F., Cattani, O., & Jouzel, J. (2006). 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core. Nature,444, 82–84.CrossRefGoogle Scholar
  12. Renne, P. R., Mundil, R., Balco, G., Min, K., & Ludwig, K. R. (2010). Joint determination of 40 K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta,74, 5349–5367.CrossRefGoogle Scholar
  13. Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L., & DePaolo, D. J. (1998). Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology,145, 117–152. doi: 10.1016/S0009-2541.00159-9.CrossRefGoogle Scholar
  14. Singer, B. S., Hoffman, K. A., Coe, R. S., Brown, L. L., Jicha, B. R., Pringle, M. S., et al. (2005). Structural and temporal requirements for geomagnetic field reversal deduced from lava flows. Nature,434, 633–636.CrossRefGoogle Scholar
  15. Suganuma, Y., Okuno, J., Heslop, D., Roberts, A. P., Yamazaki, T., & Yokoyama, Y. (2011). Post-depositional remanent magnetization lock-in for marine sediments deduced from Be-10 and paleomagnetic records through the Matuyama-Brunhes boundary. Earth Planetary Science Letters,311, 39–52.CrossRefGoogle Scholar
  16. Suganuma, Y., Yokoyama, Y., Yamazaki, T., Kawamura, K., Horng, C. S., & Matsuzaki, H. (2010). Be-10 evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama-Brunhes boundary. Earth Planetary Science Letters,296, 443–450.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.National Institute of Polar ResearchTachikawaJapan

Personalised recommendations