STRATI 2013 pp 895-899 | Cite as

A Multi-Facetted Approach to Stratigraphy: One that is Applicable to the Oil and Gas Industry?

  • Emma-Jane DaviesEmail author
  • Kenneth Thomas Ratcliffe
  • Paul Montgomery
  • Luis Pomar
  • Brooks B. Ellwood
  • David S. Wray
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)


The importance of high resolution, chronostratigraphically-grounded correlations in the oil and gas industry is being increasingly recognized as more and more challenging reservoirs are sought and exploited. The “traditional” approaches of wireline log correlation, biostratigraphy and seismic correlation commonly do not provide confident or high resolution chronostratigraphic correlations. Here, we document the results of an elemental chemostratigraphic, isotopic chemostratigraphic and magnetic susceptibility stratigraphic study on the Upper Miocene reef complexes on the southern coast of Mallorca. The aim of the paper is to demonstrate the potential for recognizing chronostratigraphic surfaces and units in these sequences by applying the stratigraphic techniques listed above and to comment on their suitability for subsurface application. Magnetic susceptibility data define maximum regressive surfaces that can be related to base level fluctuation. Elemental data enable reef complexes of differing ages to de characterized based on elements and element ratios that are reflecting changes in wind-blown and tuffaceous detritus. Carbon and oxygen isotope data have been reset by meteoric diagenesis and therefore do not offer chronostratigraphically significant information.


Chemostratigraphy Magnetic susceptibility Carbonate platform 


  1. Abreu, V. S., & Haddad, G. A. (1998). Glacioeustatic fluctuations: The mechanism linking stable isotope events and sequence stratigraphy from the Early Oligocene to Middle Miocene. In C. -P. Graciansky, J. Hardenbol, T. Jacquin & P. R. Vail (Eds.), Mesozoic and Cenozoic sequence stratigraphy of European basins (pp.245-260). London: Society for Sedimentary Geology, SP 60.Google Scholar
  2. Ellwood, B. B., Crick, R. R., El Hassani, A., Benoist, S. L. R. H., & Young, R. H. (2000). The magnetosusceptibility event and cyclostratigraphy (MSEC) method applied to marine rocks: Detrital input versus carbonate productivity. Geology,28, 1134–1138.CrossRefGoogle Scholar
  3. Hildred, G. V., Ratcliffe, K. T., Wright, A. M., Zaitlin, B. A., & Wray, D. S. (2010). Chemostratigraphic applications to low-accommodation fluvial incised-valley settings; an example from the Lower Mannville Formation of Alberta, Canada. Journal of Sedimentary Research,80, 1032–1045.CrossRefGoogle Scholar
  4. Jarvis, I., & Jarvis, K. E. (1995). Plasma spectrometry in earth sciences: Techniques, applications and future trends. In I. Jarvis & K. E. Jarvis (Eds.), Plasma Spectrometry in Earth Sciences. Chemical Geology, 95, 1–33.Google Scholar
  5. Nagata, T. (1961). Rock Magnetism. Revised Edition. Tokyo: Maruzen Company Ltd.Google Scholar
  6. Pearce, T. J., Wray, D. S., Ratcliffe, K. T., Wright, D. K., & Moscarello, A. (2005). Chemostratigraphy of the Upper Carboniferous Schooner Formation, southern North Sea. In J. D. Collinson, D. J. Evans, D. W. Holliday & N. S. Jones (Eds.), Yorkshire geological society (pp. 147–64). Occasional Publications series 7.Google Scholar
  7. Pomar, L. (1991). Reef geometries, erosion surfaces and high frequency sea-level changes, Upper Miocene Reef Complex, Mallorca, Spain. Sedimentology,38, 243–269.CrossRefGoogle Scholar
  8. Pomar, L., & Ward, W. C. (1994). Response of late Miocene Mediterranean reef platform to high-frequency eustasy. Geology,22, 131–134.CrossRefGoogle Scholar
  9. Pomar, L., Ward, W. C., & Green, D. G. (1996). Upper Miocene Reef Complex of the Llucmajor area, Mallorca, Spain. In E. Franseen, M. Esteban, W. C. Ward & J. M. Rouchy (Eds.), Models for carbonate stratigraphy from miocene reef complexes of the Mediterranean regions. Society of economic paleontologists and mineralogists: Concepts in sedimentology and paleontology series, n. 5 (pp 191–225).Google Scholar
  10. Pomar, L., & Ward, W. C. (1999). Reservoir-scale Heterogeneity in Depositional package and Diagenetic Patterns on a Reef-Rimmed Platform, Upper Miocene, Mallorca. Spain. American Association of Petroleum Geologists Bulletin,83, 1759–1773.Google Scholar
  11. Ramkumar, M., Stüben, D., & Berner, Z. (2011). Barremian-Danian chemostratigraphic sequences of the Cauvery Basin, India: Implications on scales of stratigraphic correlation. Gondwana Research,19, 291–309.CrossRefGoogle Scholar
  12. Ratcliffe, K. T., Wright, A. M., Montgomery, P., Palfrey, A., Vonk, A., & Vermeulen J (2010). Application of chemostratigraphy to the Mungaroo Formation, the Gorgon Field, offshore Northwest Australia. Australian Petroleum Production and exploration Journal 2010: 50th Anniversary Issue, 371–385.Google Scholar
  13. Ratcliffe, K. T., & Zaitlin, B. A. (Eds.). (2010). Application of modern stratigraphic techniques: Theory and case histories (p. 241). Society for Sedimentary Geology, Special Publication 94.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Emma-Jane Davies
    • 1
    Email author
  • Kenneth Thomas Ratcliffe
    • 1
  • Paul Montgomery
    • 2
  • Luis Pomar
    • 3
  • Brooks B. Ellwood
    • 4
  • David S. Wray
    • 5
  1. 1.Chemostrat LtdWelshpoolUK
  2. 2.Chevron Upstream EuropeAberdeenUK
  3. 3.Universitat de les Illes BalearsBalearsSpain
  4. 4.Department of Geology and GeophysicsLouisiana State UniversityBaton RougUSA
  5. 5.School of ScienceUniversity of GreenwichGreenwichUK

Personalised recommendations