Advertisement

STRATI 2013 pp 65-69 | Cite as

Benthic Foraminifera, Food Supply, and Carbonate Saturation Across the Cretaceous–Palaeogene Boundary: Southern Ocean Site 690

  • Laia AlegretEmail author
  • Ellen Thomas
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The specific mechanisms causing extinction and faunal turnover after the impact of an asteroid at the Cretaceous–Palaeogene (K–Pg) boundary, and the palaeogeographical variability of the biotic response, are not well understood. In order to evaluate causes of extinction and compare the biotic turnover of deep-sea benthic foraminifera at high southern latitudes with that at globally distributed sites, we analysed benthic foraminiferal assemblages at Southern Ocean ODP Site 690 on Maud Rise, Antarctica. Proxies for export productivity and the species composition of benthic assemblages indicate that the food supply to the seafloor did not change significantly, but diversity and evenness decreased for several hundred thousand years. This transient assemblage change may have been caused by the extinction of pelagic calcifiers, either directly because of the changed nature of the organic flux, or indirectly, because the sharp decline in pelagic carbonate flux to the deep-sea floor caused carbonate oversaturation of deep waters, leading to an increased abundance of large, thick-walled and heavily calcified species.

Keywords

Cretaceous–Palaeogene boundary Benthic foraminifera Pelagic calcifiers 

Notes

Acknowledgments

This research was funded by Consolider CGL 2007-63724 and CGL2011-23077 (Spanish Ministry of Science and Innovation-FEDER). ET acknowledges funding by the Leverhulme Trust (UK) and NSF OCE-720049.

References

  1. Alegret, L., Thomas, E., & Lohmann, K. C. (2012). End-Cretaceous marine mass extinction not caused by productivity collapse. Proceedings of the National Academy of Sciences,109(3), 728–732.CrossRefGoogle Scholar
  2. Bown, P. (2005). Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology,33, 653–656.CrossRefGoogle Scholar
  3. Bremer, M. L., & Lohmann, G. P. (1982). Evidence for primary control of the distribution of certain Atlantic Ocean benthonic foraminifera by degree of carbonate saturation. Deep-Sea Research,29, 987–998.CrossRefGoogle Scholar
  4. Caldeira, K., & Rampino, M. R. (1993). Aftermath of the end-Cretaceous mass extinction: Possible biogeochemical stabilization of the carbon cycle and climate. Paleoceanography,8, 515–525.CrossRefGoogle Scholar
  5. Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., et al. (2013). Is ocean acidification an open-ocean syndrome? understanding anthropogenic impacts on seawater. Estuaries and Coasts,36, 221–236.CrossRefGoogle Scholar
  6. Elliot, D. H., Askin, R. A., Kyte, F. T., & Zinsmeister, W. J. (1994). Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: Implications for the K-T event. Geology,22, 675–678.CrossRefGoogle Scholar
  7. Fütterer, D. K. (1990). Distribution of calcareous dinoflagellates at the Cretaceous–Tertiary boundary of Queen Maud Rise, Eastern Weddell Sea, Antarctica (ODP Leg 113). In P. F. Barker & J. P. Kennett et al., Proceedings of ODP, Science Results (pp. 533–548). 113, College Station: TX (Ocean Drilling Program).Google Scholar
  8. Hildebrand-Habel, T., & Streng, M. (2003). Calcareous dinoflagellate associations and Maastrichtian-Tertiary climatic change in a high latitude core (ODP Hole 689B, Maud Rise, Weddell Sea). Palaeogeography, Palaeoclimatology, Palaeoecology,197, 293–321.CrossRefGoogle Scholar
  9. Hull P. M., & Norris R. D. (2011). Diverse patterns of ocean export productivity change across the Cretaceous–Paleogene boundary: new insights from biogenic barium. Paleoceanography, 26(3), PA3205. doi:  10.1029/2010PA002082.CrossRefGoogle Scholar
  10. Jiang, S., Bralower, T. J., Patzkowsky, M. E., Kump, L. R., & Schueth, J. D. (2010). Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary. Nature Geoscience,. doi: 10.1038/NGEO775.CrossRefGoogle Scholar
  11. Liu, C., & Olsson, R. K. (1992). Evolutionary radiation of microperforate planktonic foraminifera following the K/T mass extinction event. Journal of Foraminiferal Research,4, 328–346.CrossRefGoogle Scholar
  12. Ridgwell, A. (2005). A Mid Mesozoic revolution in the regulation of ocean chemistry. Marine Geology,217, 339–357.CrossRefGoogle Scholar
  13. Thomas, E. (1990). Late Cretaceous–early Eocene mass extinctions in the deep sea. Geological Society of America Special Publication,247, 481–495.CrossRefGoogle Scholar
  14. Zeebe, R. R., & Westbroek, P. (2003). A simple model for the saturation state of the ocean: the “Strangelove”, the “Neritan” and the “Cretan” Ocean. Geochemistry, Geophysics, Geosystems,4(12), 1104. doi: 10.1029/2003GC000538.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departamento Ciencias de la Tierra and Instituto Universitario de Ciencias Ambientales de Aragón—IUCAUniversidad de ZaragozaZaragozaSpain
  2. 2.Department Center for Study of Global Change, Department of Geology and GeophysicsYale UniversityNew HavenUSA
  3. 3.Department of Earth and Environmental SciencesWesleyan UniversityMiddletownUSA

Personalised recommendations