Advertisement

STRATI 2013 pp 563-567 | Cite as

Stratigraphic Transect of Northwestern Colombia: a Key to Understanding the Origin of the Panamanian Isthmus

  • Andrés PardoEmail author
  • José Abel Flores
  • Sergio Restrepo
  • Jairo Alonso Osorio
  • Diana Ochoa
  • Juan Carlos Silva
  • Carlos Borrero
  • Agustín Cardona
  • Ángel Barbosa
  • Alejandra Mejía
  • Ángelo Plata
  • Felipe Vallejo
  • Raúl Trejos
  • Francisco J. Sierro
  • María A. Bárcena
  • Camilo Montes
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

We present new data on the stratigraphy of the Miocene in northwestern Colombia, in the Pacific Basin. The sedimentological and biostratigraphic study, based on an analysis of calcareous nannofossils, foraminifera, palynomorphs, and diatoms, has enabled a new framework to be constructed that allows the closing process of the Isthmus of Panama to be monitored and palaeoceanographic implications to be made.

Keywords

Miocene Colombian Pacific basins Biostratigraphy Calcareous nannofossils Planktonic foraminifera Diatoms Palynomorphs 

References

  1. Cediel, F., Restrepo, I., Maríncerón, M. I., Duquecaro, H., Cuartas, C., Mora, C., et al. (2009) Geology and hydrocarbon potential, Atrato and San Juan Basins, Chocó (Panamá) Arc. Tumaco Basin (Pacific Realm), Colombia: Medellín, Fondo Editorial Universidad EAFIT, Colombia, 172 p.Google Scholar
  2. Coates, A. G., Collins, L. S., Aury, M. P., & Berggren, W. A. (2004). The geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. GSA Bulletin,116, 1327–1344.CrossRefGoogle Scholar
  3. Coates, A. G., & Obando, J. A. (1996). The geologic evolution of the Central American Isthmus. In J. B. C. Jackson, A. F. Budd, & A. G. Coates (Eds.), Evolution and environment in tropical america (p. 425). Chicago, IL: University of Chicago Press.Google Scholar
  4. Cody, S., Richardson, J. E., Rull, V., Ellis, C., & Pennington, T. (2010). The great American biotic interchange revisited. Ecography,33, 326–332.Google Scholar
  5. Duquecaro, H. (1990). The Choco Block in the northwestern corner of South America: Structural, tectonostratigraphic and paleogeographic implications. Journal of South American Earth Sciences,3, 71–84.CrossRefGoogle Scholar
  6. Ehlers, T. A., & Poulsen, C. J. (2009). Influence of Andean uplift on climate and paleoaltimetry estimates. Earth and Planetary Science Letters,281, 238–248.CrossRefGoogle Scholar
  7. Farris, D. W., Restrepo Moreno, S. A., Jaramillo, C., Bayona, G., Montes, C., Cardona, A., et al. (2011). Evolution of the Panamanian Isthmus. Geology,39, 1007–1010.CrossRefGoogle Scholar
  8. Frank, M., Reynolds, B. C., & O’nions, R. K. (1999). Nd and Pb isotopes in Atlantic and Pacific water masses before and after closure of the Panama Gateway. Geology,27, 1147–1150.CrossRefGoogle Scholar
  9. Gradstein, F., Ogg, J., & Smith, A. (2004). A geologic timescale 2004 (p. 589). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Harmon, R. S. (2005). The geological development of Panama. In V. P. Singh & R. S. Harmon (Eds.), The Río Chagres, Panama: A multidisciplinary profile of a tropical watershed, (52) (p. 352). Netherlands: Springer.CrossRefGoogle Scholar
  11. Hartley, A. J. (2003). Andean uplift and climate change. Journal of the Geological Society of London,160, 7–10.CrossRefGoogle Scholar
  12. Hoorn, C., Wesselingh, F. P., Steege, H., Bermudez, M. A., Mora, A., Sevink, J., et al. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science,330, 927–931.CrossRefGoogle Scholar
  13. IGAC INGEOMINAS. (2001). Investigación integral del Andén Pacífico colombiano. Bogotá: IGAC INGEOMINAS. 168.Google Scholar
  14. Jackson, J. B. C., Jung, J., Coates, A. G., & Collins, L. S. (1993). Diversity and extinction of tropical American mollusks and emergence of the Isthmus of Panama. Science,260, 1624–1626.CrossRefGoogle Scholar
  15. Keigwin, L. (1982). Isotopic Paleoceanography of the Caribbean and East Pacific: Role of Panama Uplift in Late Neogene Time. Science,217, 350–353.CrossRefGoogle Scholar
  16. Kerr, A. C., & Tarney, J. (2005). Tectonic evolution of the Caribbean and northwestern South America: The case for Accretion of two Late Cretaceous oceanic plateaus. Geological Society of America Bulletin,33, 269–272.Google Scholar
  17. Marshall, L. G., Butler, R. F., Drake, R. E., Curtis, G. H., & Tedford, R. H. (1979). Calibration of the great American interchange. Science,204, 272–279.CrossRefGoogle Scholar
  18. Mittermeier, R. A., Meyer, N., & Mittermeier, C. G. (1999). Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Monterrey: Conservation International and Agrupacion Sierra Madre. 432.Google Scholar
  19. Montes, C., Cardona, A., Bayona, G., Restrepo Moreno, S. A., Macfadden, R., Buchs, D., et al. (2012). Evidence for middle Eocene and younger emergence in Central Panama: Implications for Isthmus closure. Geological Society of America Bulletin,30528, 1–20.Google Scholar
  20. Moreno Sanchez, M., & Pardo Trujillo, A. (2003) Stratigraphical and sedimentological constraints on western Colombia: Implications on the evolution of the Caribbean plate. In C.R. Bartolini, A. Buffler, & J. Blickwede (Eds.), The CircumGulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, AAPG 79, 891–924.Google Scholar
  21. Newkir, D. R., & Martin, E. E. (2009). Circulation through the Central American Seaway during the Miocene carbonate crash. Geology,37, 87–90.CrossRefGoogle Scholar
  22. Nivia, A., Marriner, G. F., Kerr, C. K., & Tarney, J. (2006). The quebradagrande complex: A lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes. Journal of South American Earth Sciences,21, 423–436.CrossRefGoogle Scholar
  23. Pindell, L. J., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame. An update. Geological Society, London, Special Publications,328, 55.Google Scholar
  24. Restrepo Moreno, S. A., Foster, D. A., Stockli, D. F., & Parra, L. N. (2009). Longterm erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (UTh)/He thermochronology. Earth and Planetary Science Letters,278, 1–12.CrossRefGoogle Scholar
  25. Restrepo, J. J., & Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes,11, 189–193.CrossRefGoogle Scholar
  26. Van Der Hammen, T. (1989). History of the montane forests of the northern Andes. Plant Systematics and Evolution,162, 109–114.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrés Pardo
    • 1
    Email author
  • José Abel Flores
    • 2
  • Sergio Restrepo
    • 1
    • 4
    • 6
  • Jairo Alonso Osorio
    • 3
  • Diana Ochoa
    • 2
  • Juan Carlos Silva
    • 1
  • Carlos Borrero
    • 1
  • Agustín Cardona
    • 4
  • Ángel Barbosa
    • 1
  • Alejandra Mejía
    • 2
    • 3
  • Ángelo Plata
    • 1
  • Felipe Vallejo
    • 1
  • Raúl Trejos
    • 1
  • Francisco J. Sierro
    • 2
  • María A. Bárcena
    • 2
  • Camilo Montes
    • 5
  1. 1.Instituto de Investigaciones en Estratigrafía IIES, Universidad de CaldasManizalesColombia
  2. 2.Facultad de CienciasGrupo de Geociencias Oceánicas, Universidad de SalamancaSalamancaSpain
  3. 3.Agencia Nacional de Hidrocarburos ANHBogotáColombia
  4. 4.Universidad Nacional de ColombiaMedellínColombia
  5. 5.Universidad de Los AndesBogotáColombia
  6. 6.Escuela de Ingeniería de AntioquiaMedellínColombia

Personalised recommendations