A New Plane-Sweep Algorithm for the K-Closest-Pairs Query

  • George Roumelis
  • Michael Vassilakopoulos
  • Antonio Corral
  • Yannis Manolopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8327)


One of the most representative and studied Distance-Based Queries in Spatial Databases is the K-Closest-Pairs Query (KCPQ). This query involves two spatial data sets and a distance function to measure the degree of closeness, along with a given number K of elements of the result. The output is a set of pairs of objects (with one object element from each set), with the K lowest distances. In this paper, we study the problem of processing KCPQs between RAM-based point sets, using Plane-Sweep (PS) algorithms. We utilize two improvements that can be applied to a PS algorithm and propose a new algorithm that minimizes the number of distance computations, in comparison to the classic PS algorithm. By extensive experimentation, using real and synthetic data sets, we highlight the most efficient improvement and show that the new PS algorithm outperforms the classic one, in most cases.


Spatial Query Processing Plane-Sweep Closest-Pair Query Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. In: SIGMOD Conference, pp. 322–331 (1990)Google Scholar
  2. 2.
    Brinkhoff, T., Kriegel, H.P., Seeger, B.: Efficient Processing of Spatial Joins Using R-trees. In: SIGMOD Conference, pp. 237–246 (1993)Google Scholar
  3. 3.
    Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest Pair Queries in Spatial Databases. In: SIGMOD Conference, pp. 189–200 (2000)Google Scholar
  4. 4.
    Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms for Processing K-Closest-Pair Queries in Spatial Databases. Data & Knowledge Engineering 49(1), 67–104 (2004)CrossRefGoogle Scholar
  5. 5.
    Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD Conference, pp. 47–57 (1984)Google Scholar
  6. 6.
    Hinrichs, K., Nievergelt, J., Schorn, P.: Plane-Sweep Solves the Closest Pair Problem Elegantly. Information Processing Letters 26(5), 255–261 (1988)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hjaltason, G.R., Samet, H.: Incremental Distance Join Algorithms for Spatial Databases. In: SIGMOD Conference, pp. 237–248 (1998)Google Scholar
  8. 8.
    Jacox, E.H., Samet, H.: Spatial Join Techniques. TODS 32(1), article 7, 1–44 (2007)Google Scholar
  9. 9.
    Kim, Y.J., Patel, J.: Performance Comparison of the R*-tree and the Quadtree for kNN and Distance Join Queries. IEEE TKDE 22(7), 1014–1027 (2010)Google Scholar
  10. 10.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer (1985)Google Scholar
  11. 11.
    Rigaux, P., Scholl, M., Voisard, A.: Introduction to Spatial Databases: Applications to GIS. Morgan Kaufmann (2000)Google Scholar
  12. 12.
    Shin, H., Moon, B., Lee, S.: Adaptive and Incremental Processing for Distance Join Queries. IEEE TKDE 15(6), 1561–1578 (2003)Google Scholar
  13. 13.
    Zheng, K., Zhou, X., Fung, P.C., Xie, K.: Spatial query processing for fuzzy objects. VLDB Journal 21, 729–751 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • George Roumelis
    • 1
  • Michael Vassilakopoulos
    • 2
  • Antonio Corral
    • 3
  • Yannis Manolopoulos
    • 1
  1. 1.Dept. of InformaticsAristotle UniversityThessalonikiGreece
  2. 2.Dept. of Computer Science and Biomedical InformaticsUniversity of ThessalyLamiaGreece
  3. 3.Dept. of InformaticsUniversity of AlmeriaAlmeriaSpain

Personalised recommendations