Finding Disjoint Paths in Split Graphs

  • Pinar Heggernes
  • Pim van ’t Hof
  • Erik Jan van Leeuwen
  • Reza Saei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8327)

Abstract

The well-known Disjoint Paths problem takes as input a graph G and a set of k pairs of terminals in G, and the task is to decide whether there exists a collection of k pairwise vertex-disjoint paths in G such that the vertices in each terminal pair are connected to each other by one of the paths. This problem is known to NP-complete, even when restricted to planar graphs or interval graphs. Moreover, although the problem is fixed-parameter tractable when parameterized by k due to a celebrated result by Robertson and Seymour, it is known not to admit a polynomial kernel unless NP ⊆ coNP/poly. We prove that Disjoint Paths remains NP-complete on split graphs, and show that the problem admits a kernel with O(k2) vertices when restricted to this graph class. We furthermore prove that, on split graphs, the edge-disjoint variant of the problem is also NP-complete and admits a kernel with O(k3) vertices. To the best of our knowledge, our kernelization results are the first non- trivial kernelization results for these problems on graph classes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comp. Syst. Sci. 75(8), 423–434 (2009)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M. (Meta) kernelization. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 629–638. IEEE Computer Society (2009)Google Scholar
  3. 3.
    Bodlaender, H.L., Thomasse, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comp. Sci. 412(35), 4570–4578 (2011)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)Google Scholar
  5. 5.
    Diestel, R.: Graph Theory, Electronic edn. Springer (2005)Google Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer (1999)Google Scholar
  7. 7.
    Dvorak, Z., Král’, D., Thomas, R.: Three-coloring triangle-free planar graphs in linear time. In: Mathieu, C. (ed.) SODA 2009, pp. 1176–1182. ACM-SIAM (2009)Google Scholar
  8. 8.
    Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Comp. 5, 691–703 (1976)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Frank, A.: Packing paths, circuits, and cuts – a survey. In: Korte, B., Lovász, L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows, and VLSI-Layout, pp. 47–100. Springer, Berlin (1990)Google Scholar
  10. 10.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Disc. Math. 57 (2004)Google Scholar
  11. 11.
    Gurski, F., Wanke, E.: Vertex disjoint paths on clique-width bounded graphs. Theor. Comput. Sci. 359, 188–199 (2006)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Kammer, F., Tholey, T.: The k-disjoint paths problem on chordal graphs. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 190–201. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68 (1975)MATHMathSciNetGoogle Scholar
  14. 14.
    Kawarabayashi, K., Kobayashi, Y., Reed, B.A.: The disjoint paths problem in quadratic time. J. Comb. Theory B 102, 424–435 (2012)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Kobayashi, Y., Kawarabayashi, K.: Algorithms for finding an induced cycle in planar graphs and bounded genus graphs. In: Mathieu, C. (ed.) SODA 2009, pp. 1146–1155. ACM-SIAM (2009)Google Scholar
  16. 16.
    Kramer, M., van Leeuwen, J.: The complexity of wirerouting and finding minimum area layouts for arbitrary VLSI circuits. Adv. Comput. Res. 2, 129–146 (1984)Google Scholar
  17. 17.
    Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. ACM SIGDA Newsletter 5(3), 31–36 (1975)CrossRefGoogle Scholar
  18. 18.
    Natarajan, S., Sprague, A.P.: Disjoint paths in circular arc graphs. Nordic J. Comp. 3, 256–270 (1996)MathSciNetGoogle Scholar
  19. 19.
    Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is NP-complete for series-parallel graphs. Discrete Applied Math. 115, 177–186 (2001)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Reed, B.A.: Tree width and tangles: A new connectivity measure and some applications. In: Bailey, R.A. (ed.) Surveys in Combinatorics, pp. 87–162. Cambridge University Press (1997)Google Scholar
  21. 21.
    Reed, B.A., Robertson, N., Schrijver, A., Seymour, P.D.: Finding disjoint trees in planar graphs in linear time. In: Contemp. Math., vol. 147, pp. 295–301. Amer. Math. Soc., Providence (1993)Google Scholar
  22. 22.
    Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. J. Comb. Theory B 63(1), 65–110 (1995)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Applied Math. 8, 85–89 (1984)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Vygen, J.: Disjoint paths. Technical report 94816, Research Institute for Discrete Mathematics, University of Bonn (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pinar Heggernes
    • 1
  • Pim van ’t Hof
    • 1
  • Erik Jan van Leeuwen
    • 2
  • Reza Saei
    • 1
  1. 1.Department of InformaticsUniversity of BergenNorway
  2. 2.MPI für InformatikSaarbrückenGermany

Personalised recommendations