Advertisement

Enhancing Path Selection in Multihomed Nodes

  • Bruno Sousa
  • Kostas Pentikousis
  • Marilia Curado
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 125)

Abstract

Path selection in multihomed nodes can be enhanced by optimization techniques that consider multiple criteria. With NP-Hard problems, MADM techniques have the flexibility of including any number of benefits or costs criteria and are open regarding the functions that can be employed to normalize data or to determine distances. TOPSIS uses the Euclidean distance (straight line) while DiA employs the Manhattan distance (grid-based) to determine the distance of each path to ideal values. MADM techniques have been employed in distinct areas, as well. Such openness and flexibility may lead to sub-optimal path selection, as their optimality is associated with functions that determine distance as a straight line or as grid path, and not inside an ideal range determined by the type of criteria. In this paper we propose the MeTH distance which considers the type of criteria, whether benefits or costs. In addition, we establish a MADM evaluation methodology based on statistical analysis that enables an objective comparison between MADM mechanisms and respective functions for path selection. With the proposed MADM evaluation methodology, we demonstrate that our MeTH distance is more efficient for the path selection problem than Euclidean and Manhattan distances.

Keywords

MADM DoE TOPSIS path selection multihoming evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hou, R., Lui, K., Leung, K., Baker, F.: Approximation Algorithm for QoS Routing With Multiple Additive Constraints. In: ICC 2009, pp. 1–5. IEEE (2009)Google Scholar
  2. 2.
    Li, X., Mehani, O., Agüero, R., Boreli, R., Zaki, Y., Toseef, U.: Evaluating User-Centric Multihomed Flow Management for Mobile Devices in Simulated Heterogeneous Networks. In: Timm-Giel, A., Strassner, J., Agüero, R., Sargento, S., Pentikousis, K. (eds.) MONAMI 2012. LNICST, vol. 58, pp. 84–98. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Choque, J., Agüero, R., Muñoz, L.: Optimum Selection of Access Networks Within Heterogeneous Wireless Environments Based on Linear Programming Techniques. Mob. Netw. Appl. 16(4), 412–423 (2011)CrossRefGoogle Scholar
  4. 4.
    Kucharzak, M., Walkowiak, K.: On modelling of fair throughput allocation in overlay multicast networks. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN 2011 and ruSMART 2011. LNCS, vol. 6869, pp. 529–540. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J.: A State-of The-Art Survey of TOPSIS Applications. Expert Systems with Applications 39(17), 13051–13069 (2012)CrossRefGoogle Scholar
  6. 6.
    Sun, C.-C.: A Performance Evaluation Model by Integrating Fuzzy AHP and Fuzzy TOPSIS Methods. Expert Systems with Applications 37(12), 7745–7754 (2010)CrossRefGoogle Scholar
  7. 7.
    Nacef, B., Montavont, N.: A Generic End-Host Mechanism for Path Selection and Flow Distribution. In: Proc. PIMRC 2008. IEEE (September 2008)Google Scholar
  8. 8.
    Tran, P.N., Boukhatem, N.: The Distance to The Ideal Alternative (DiA) Algorithm for Interface Selection in Heterogeneous Wireless Networks. In: Proc. MobiWac 2008 (October 2008)Google Scholar
  9. 9.
    Lahby, M., Cherkaoui, L., Adib, A.: New Optimized Network Selection Decision in Heterogeneous Wireless Networks. International Journal of Computer Applications 54(16) (September 2012)Google Scholar
  10. 10.
    Ren, L., Zhang, Y., Wang, Y., Sun, Z.: Comparative Analysis of a Novel M-TOPSIS Method and TOPSIS. Applied Mathematics Research eXpress 2007, 1–10 (2010)zbMATHGoogle Scholar
  11. 11.
    Chakraborty, S., Yeh, C.-H.: A Simulation Comparison of Normalization Procedures for TOPSIS. In: CIE 2009, pp. 1815–1820. IEEE (2009)Google Scholar
  12. 12.
    Sousa, B.: Evaluating MADM techniques, http://mcoa.dei.uc.pt/doe/ (last Visit: May 12, 2013)
  13. 13.
    Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons (2008)Google Scholar
  14. 14.
    İç, Y.T.: An Experimental Design Approach Using TOPSIS Method for The Selection of Computer-Integrated Manufacturing Technologies. Robot. Comput.-Integr. Manuf. 28(2), 245–256 (2012)CrossRefGoogle Scholar
  15. 15.
    Sandanayake, Y., Oduoza, C., Proverbs, D.: A systematic modelling and simulation approach for jit performance optimisation. Robotics and Computer-Integrated Manufacturing 24(6), 735–743 (2008)CrossRefGoogle Scholar
  16. 16.
    Drago, I., Mellia, M., Munafò, M.M., Sperotto, A., Sadre, R., Pras, A.: Inside dropbox: Understanding personal cloud storage services. In: Proceedings of the 12th ACM Internet Measurement Conference, IMC 2012 (2012)Google Scholar
  17. 17.
    Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., Zekauskas, M.: A One-way Active Measurement Protocol (OWAMP). IETF Request for Comments: 4656 (September 2006)Google Scholar
  18. 18.
    Boote, J., Karp, A.: Internet 2 One-Way Ping (OWAMP) (2013),http://www.internet2.edu/performance/owamp/index.html (last visit: May 12, 2013)
  19. 19.
    Boote, J., Brown, A.: Internet 2 Bandwidth Test Controller (BWCTL) (2013), http://www.internet2.edu/performance/bwctl/index.html (last visit: May 12, 2013)
  20. 20.
    R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012), ISBN 3-900051-07-0Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Bruno Sousa
    • 1
  • Kostas Pentikousis
    • 2
  • Marilia Curado
    • 1
  1. 1.CISUCUniversity of CoimbraCoimbraPortugal
  2. 2.Huawei TechnologiesBerlinGermany

Personalised recommendations