Advertisement

Measure-Independent Characterization of Contrast Optimal Visual Cryptography Schemes

  • Paolo D’Arco
  • Roberto De PriscoEmail author
  • Alfredo De Santis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8317)

Abstract

The contrast in visual cryptography has received a lot of attention. It has been studied using three different measures. In this paper we follow a measure-independent approach, which, by using the structural properties of the schemes, enables us to provide a characterization of optimal schemes that is independent of the specific measure used to assess the contrast. In particular we characterize and provide constructions of optimal schemes for the cases of \((2,n)\)-threshold and \((n,n)\)-threshold schemes. Then, we apply the measure-independent results to the three measures that have been used in the literature obtaining both new characterizations and constructions of optimal schemes and alternative proofs of known results.

Keywords

Secret sharing Visual cryptography Optimal contrast 

References

  1. 1.
    Adhikari, A., Sikdar, S.: A new (2, n)-visual threshold scheme for color images. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 148–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for general access structures. Inf. Comput. 129, 86–106 (1996)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Constructions and bounds for visual cryptography. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 416–428. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Extended schemes for visual cryptography. Theor. Comput. Sci. 250, 143–161 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Blundo, C., Cimato, S., De Santis, A.: Visual cryptography schemes with optimal pixel expansion. Theor. Comput. Sci. 369, 169–182 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: Contrast optimal threshold visual cryptography schemes. SIAM J. Discrete Math. 16, 224–261 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Blundo, C., De Bonis, A., De Santis, A.: Improved schemes for visual cryptography. Des. Codes. Crypt. 24, 255–278 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Blundo, C., De Santis, A.: Visual cryptography schemes with perfect reconstruction of black pixels. J. Comput. Graph. 22, 449–455 (1998)CrossRefGoogle Scholar
  9. 9.
    Blundo, C., De Santis, A., Stinson, D.R.: On the contrast in visual cryptography schemes. J. Cryptol. 12, 261–289 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, S.-K., Lin, S.-J.: Optimal \((2, n)\) and \((2,\infty )\) visual secret sharing by generalized random grids. J. Vis. Commun. Image Represent. 23, 677–684 (2012)CrossRefGoogle Scholar
  11. 11.
    Chen, T.-H., Tsao, K.-H.: Visual secret sharing revisited. Pattern Recogn. 42, 2203–2217 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, T.-H., Tsao, K.-H.: Threshold visual secret sharing by random grids. J. Syst. Softw. 84, 1197–1208 (2011)CrossRefGoogle Scholar
  13. 13.
    Cimato, S., De Prisco, R., De Santis, A.: Colored visual cryptography without color darkening. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 235–248. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Cimato, S., De Prisco, R., De Santis, A.: Optimal colored threshold visual cryptography schemes. Des. Codes. Crypt. 35, 311–335 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Cimato, S., De Prisco, R., De Santis, A.: Probabilistic visual cryptography schemes. Comput. J. 49(1), 97–107 (2006)CrossRefGoogle Scholar
  16. 16.
    Cimato, S., De Prisco, R., De Santis, A.: Colored visual cryptography without color darkening. Theor. Comput. Sci. 374(1–3), 261–276 (2007)CrossRefzbMATHGoogle Scholar
  17. 17.
    Cimato, S., Yang, C.-N. (eds.): Visual Cryptography and Secret Image Sharing. CRC Press, USA (2012). ISBN 978-1-4398-3721-4Google Scholar
  18. 18.
    De Prisco, R., De Santis, A.: Using colors to improve visual cryptography for black and white images. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 182–201. Springer, Heidelberg (2011)Google Scholar
  19. 19.
    De Prisco, R., De Santis, A., Color visual cryptography schemes for black and white secret images. Theor. Comput. Sci. http://dx.doi.org/10.1016/j.tcs.2013.09.005, to appear
  20. 20.
    Hou, Y.-C.: Visual cryptography for color images. Pattern Recogn. 36, 1619–1629 (2003)CrossRefGoogle Scholar
  21. 21.
    Eisen, P.A., Stinson, D.R.: Threshold visual cryptography schemes with specified whiteness levels of reconstructed pixels. Des. Codes. Crypt. 25, 15–61 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal \(k\) out of \(n\) secret sharing schemes in visual cryptography. Theor. Comput. Sci. 240, 471–485 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Kafri, O., Keren, E.: Encryption of pictures and shapes by random grids. Opt. Lett. 12(6), 377–379 (1987)CrossRefGoogle Scholar
  24. 24.
    Krause, M., Simon, H.U.: Determining the optimal contrast for secret sharing schemes in visual cryptography. Comb. Probab. Comput. 12, 285–299 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Koga, H.: Proposal of a lattice-based visual secret sharing scheme for color and gray-scale images. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 81–A(6), 1262–1269 (1988)Google Scholar
  26. 26.
    Kuhlmann, C., Simon, H.U.: Construction of visual secret sharing schemes with almost optimal contrast. In: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, San Francisco, pp. 262–272, 9–11 January 2000Google Scholar
  27. 27.
    Lu, S., Manchala, D., Ostrovsky, R.: Visual cryptography on graphs. J. Comb. Optim. 21, 47–66 (2011)CrossRefzbMATHGoogle Scholar
  28. 28.
    Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)Google Scholar
  29. 29.
    Shyu, S.-J.: Image encryption by random grids. Pattern Recogn. 40, 1014–1031 (2007)CrossRefzbMATHGoogle Scholar
  30. 30.
    Shyu, S.-J.: Image encryption by multiple random grids. Pattern Recogn. 42, 1582–1596 (2009)CrossRefzbMATHGoogle Scholar
  31. 31.
    Simon, H.U.: Perfect reconstruction of black pixels revisited. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 221–232. Springer, Heidelberg (2005)Google Scholar
  32. 32.
    Verheul, E.R., van Tilborg, H.C.A.: Constructions and properties of \(k\) out of \(n\) visual secret. sharing schemes. Des. Codes. Crypt. 11, 179–196 (1997)CrossRefzbMATHGoogle Scholar
  33. 33.
    Wang, R.-Z., Lan, Y.-C., Lee, Y.-K., Huang Shyu, S.J., Chia, T.L.: Incrementing visual cryptography using random grids. Opt. Commun. 283, 4242–4249 (2010)CrossRefGoogle Scholar
  34. 34.
    Yang, C.-N.: New visual secret sharing schemes using probabilistic method. Pattern Recogn. Lett. 25, 481–494 (2004)CrossRefGoogle Scholar
  35. 35.
    Yang, C.-N., Chen, T.-S.: Size-adjustable visual secret sharing schemes. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 88–A(9), 2471–2474 (2005)CrossRefGoogle Scholar
  36. 36.
    Yang, C.-N., Chen, T.-S.: Aspect ratio invariant visual secret sharing schemes with minimum pixel expansion. Pattern Recogn. Lett. 26, 193–206 (2005)CrossRefGoogle Scholar
  37. 37.
    Yang, C.N., Laih, C.-S.: New colored visual secret sharing schemes. Des. codes. crypt. 20, 325–335 (2000)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Paolo D’Arco
    • 1
  • Roberto De Prisco
    • 1
    Email author
  • Alfredo De Santis
    • 1
  1. 1.Dipartimento di InformaticaUniversità di SalernoFiscianoItaly

Personalised recommendations