Advertisement

Vision Based Page Segmentation Algorithm: Extended and Perceived Success

  • M. Elgin Akpınar
  • Yeliz Yes̨ilada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8295)

Abstract

Web pages consist of different visual segments, serving different purposes. Typical structural segments are header, right or left columns and main content. Segments can also have nested structure which means some segments may include other segments. Understanding these segments is important in properly displaying web pages for small screen devices and in alternative forms such as audio for screen reader users. There exist different techniques in identifying visual segments in a web page. One successful approach is Vision Based Segmentation Algorithm (VIPS Algorithm) which uses both the underlying source code and also the visual rendering of a web page. However, there are some limitations of this approach and this paper explains how we have extended and improved VIPS and built it in Java. We have also conducted some online user evaluations to investigate how people perceive the success of the segmentation approach and in which granularity they prefer to see a web page segmented. This paper presents the preliminary results which show that, people perceive segmentation with higher granularity as better segmentation regardless of the web page complexity.

Keywords

Web Accessibility Web Page Segmentation Reverse Engineering User Study 

References

  1. 1.
    Ahmadi, H., Kong, J.: Efficient web browsing on small screens. In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI 2008, pp. 23–30. ACM, New York (2008)Google Scholar
  2. 2.
    Asakawa, C., Takagi, H.: Annotation-based transcoding for nonvisual web access. In: ASSETS 2000, pp. 172–179. ACM Press (2000)Google Scholar
  3. 3.
    Baluja, S.: Browsing on small screens: recasting web-page segmentation into an efficient machine learning framework. In: WWW 2006: Proceedings of the 15th International Conference on World Wide Web, pp. 33–42. ACM, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Borodin, Y., Mahmud, J., Ramakrishnan, I.V., Stent, A.: The hearsay non-visual web browser. In: Proceedings of the 2007 International Cross-disciplinary Conference on Web Accessibility (W4A 2007), pp. 128–129. ACM, New York (2007)CrossRefGoogle Scholar
  5. 5.
    Cai, D., He, X., Li, Z., Ma, W.Y., Wen, J.R.: Hierarchical clustering of www image search results using visual, textual and link information. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, MULTIMEDIA 2004, pp. 952–959. ACM, New York (2004)Google Scholar
  6. 6.
    Cai, D., He, X., Wen, J.R., Ma, W.Y.: Block-level link analysis. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2004, pp. 440–447. ACM, New York (2004), http://doi.acm.org/10.1145/1008992.1009068 Google Scholar
  7. 7.
    Cai, D., Yu, S., Wen, J.R., Ma, W.Y.: Vips: a vision based page segmentation algorithm. Tech. Rep. MSR-TR-2003-79, Microsoft Research (2003)Google Scholar
  8. 8.
    Chen, J., Zhou, B., Shi, J., Zhang, H., Wu, Q.: Function-based object towards website adaptation. In: Proceedings of the Tenth International World Wide Web Conference. ACM, Hong Kong (2001)Google Scholar
  9. 9.
    Chen, Y., Ma, W., Zhang, H.: Detecting web page structure for adaptive viewing on small form factor devices. In: Proceedings of the Twelfth International World Wide Web Conference (2003)Google Scholar
  10. 10.
    Chen, Y., Xie, X., Ma, W.Y., Zhang, H.J.: Adapting web pages for small-screen devices. IEEE Internet Computing 9, 50–56 (2005), http://portal.acm.org/citation.cfm?id=1053547.1053593 CrossRefGoogle Scholar
  11. 11.
    Hattori, G., Hoashi, K., Matsumoto, K., Sugaya, F.: Robust web page segmentation for mobile terminal using content-distances and page layout information. In: WWW 2007: Proceedings of the 16th International Conference on World Wide Web, pp. 361–370. ACM Press, New York (2007)CrossRefGoogle Scholar
  12. 12.
    Hwang, Y., Kim, J., Seo, E.: Structure-aware web transcoding for mobile devices. IEEE Internet Computing 7(5), 14–21 (2003)CrossRefGoogle Scholar
  13. 13.
    Lunn, D., Harper, S., Bechhofer, S.: Identifying behavioral strategies of visually impaired users to improve access to web content. ACM Trans. Access. Comput. 3(4), 13:1–13:35 (2011), http://doi.acm.org/10.1145/1952388.1952390 Google Scholar
  14. 14.
    Mahmud, J.U., Borodin, Y., Ramakrishnan, I.V.: Csurf: a context-driven non-visual web-browser. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 31–40. ACM, New York (2007), http://doi.acm.org/10.1145/1242572.1242578 CrossRefGoogle Scholar
  15. 15.
    Michailidou, E.: ViCRAM: Visual Complexity Rankings and Accessibility Metrics. Ph.D. thesis (2010)Google Scholar
  16. 16.
    Milic-Frayling, N., Sommerer, R.: Smartview: Flexible viewing of web page contents. In: Poster Proceedings of the Eleventh International World Wide Web Conference (May 2002)Google Scholar
  17. 17.
    Song, R., Liu, H., Wen, J.R., Ma, W.Y.: Learning block importance models for web pages. In: Proceedings of the 13th International Conference on World Wide Web, WWW 2004, pp. 203–211. ACM, New York (2004), http://doi.acm.org/10.1145/988672.988700 Google Scholar
  18. 18.
    Takagi, H., Asakawa, C., Fukuda, K., Maeda, J.: Site-wide annotation: Reconstructing existing pages to be accessible. In: ASSETS 2002, pp. 81–88. ACM Press (2002)Google Scholar
  19. 19.
    Whang, Y., Jung, C., Kim, J., Chung, S.: Webalchemist: A web transcoding system for mobile web access in handheld devices. In: Optoelectronic and Wireless Data Management, Processing, Storage, and Retrieval, pp. 102–109 (2001)Google Scholar
  20. 20.
    Xiang, P., Shi, Y.: Recovering semantic relations from web pages based on visual cues. In: Proceedings of the 11th International Conference on Intelligent User Interfaces, IUI 2006, pp. 342–344. ACM, New York (2006), http://doi.acm.org/10.1145/1111449.1111531 Google Scholar
  21. 21.
    Xiao, X., Luo, Q., Hong, D., Fu, H.: Slicing*-tree based web page transformation for small displays. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, CIKM 2005, pp. 303–304. ACM, New York (2005), http://doi.acm.org/10.1145/1099554.1099638 Google Scholar
  22. 22.
    Xiao, Y., Tao, Y., Li, Q.: Web page adaptation for mobile device. In: Wireless Communications, Networking and Mobile Computing (2008)Google Scholar
  23. 23.
    Xiao, Y., Tao, Y., Li, W.: A dynamic web page adaptation for mobile device based on web2.0. In: Proceedings of the 2008 Advanced Software Engineering and Its Applications, pp. 119–122. IEEE Computer Society, Washington, DC (2008), http://portal.acm.org/citation.cfm?id=1487741.1488145 CrossRefGoogle Scholar
  24. 24.
    Xie, X., Miao, G., Song, R., Wen, J.R., Ma, W.Y.: Efficient browsing of web search results on mobile devices based on block importance model. In: Proceedings of the Third IEEE International Conference on Pervasive Computing and Communications, pp. 17–26. IEEE Computer Society, Washington, DC (2005), http://portal.acm.org/citation.cfm?id=1048930.1049752 Google Scholar
  25. 25.
    Yang, X., Shi, Y.: Enhanced gestalt theory guided web page segmentation for mobile browsing. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, vol. 03, WI-IAT 2009, pp. 46–49. IEEE Computer Society, Washington, DC (2009), http://dx.doi.org/10.1109/WI-IAT.2009.227 CrossRefGoogle Scholar
  26. 26.
    Yesilada, Y., Chuter, A., Henry, S.L.: Shared Web Experiences: Barriers Common to Mobile Device Users and People with Disabilities. W3C (2008), http://www.w3.org/WAI/mobile/experiences
  27. 27.
    Yesilada, Y., Harper, S., Goble, C.A., Stevens, R.: Screen readers cannot see (ontology based semantic annotation for visually impaired web travellers). In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, pp. 445–458. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Yin, X., Lee, W.: Using link analysis to improve layout on mobile devices. In: Proceedings of the Thirteenth International World Wide Web Conference, pp. 338–344 (2004)Google Scholar
  29. 29.
    Yin, X., Lee, W.S.: Understanding the function of web elements for mobile content delivery using random walk models. In: Special Interest Tracks and Posters of the 14th International Conference on World Wide Web, WWW 2005, pp. 1150–1151. ACM, New York (2005), http://doi.acm.org/10.1145/1062745.1062913 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • M. Elgin Akpınar
    • 1
  • Yeliz Yes̨ilada
    • 2
  1. 1.Middle East Technical UniversityAnkaraTurkey
  2. 2.Northern Cyprus CampusMiddle East Technical UniversityMersinTurkey

Personalised recommendations