Advertisement

Query Answering in Datalog+/- Ontologies under Group Preferences and Probabilistic Uncertainty

  • Thomas Lukasiewicz
  • Maria Vanina Martinez
  • Gerardo I. Simari
  • Oana Tifrea-Marciuska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8295)

Abstract

In the recent years, the Web has been changing more and more towards the so-called Social Semantic Web. Rather than being based on the link structure between Web pages, the ranking of search results in the Social Semantic Web needs to be based on something new. We believe that it can be based on user preferences and underlying ontological knowledge. Modeling uncertainty is also playing an increasingly important role in these domains, since uncertainty can arise due to many uncontrollable factors. In this paper, we thus propose an extension of the Datalog+/- ontology language with a model for representing preferences of groups of users and a model for representing the (probabilistic) uncertainty in the domain. Assuming that more probable answers are more preferable, this raises the question how to rank query results, since the preferences of single users may be in conflict with the probability-based preferences and also with each other. We thus propose preference merging and aggregation operators, respectively, and study their semantic and computational properties. Based on these operators, we provide algorithms for answering k-rank queries for DAQs (disjunctions of atomic queries), which generalize top-k queries based on the iterative computation of classical skyline answers, and show that, under certain reasonable conditions, they run in polynomial time in the data complexity.

Keywords

Probabilistic Model Preference Relation Social Choice Multiagent System Preference Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackerman, M., Choi, S.Y., Coughlin, P., Gottlieb, E., Wood, J.: Elections with partially ordered preferences. Public Choice (2012)Google Scholar
  2. 2.
    Amer-Yahia, S., Roy, S.B., Chawla, A., Das, G., Yu, C.: Group recommendation: Semantics and efficiency. Proc. VLDB Endow. 2(1), 754–765 (2009)Google Scholar
  3. 3.
    Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  4. 4.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. ICDE 2001, pp. 421–430. IEEE Computer Society (2001)Google Scholar
  5. 5.
    Brafman, R.I., Domshlak, C.: Preference handling — An introductory tutorial. AI. Mag. 30(1), 58–86 (2009)Google Scholar
  6. 6.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. In: Proc. KR 2008, pp. 70–80. AAAI Press (2008)Google Scholar
  7. 7.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)CrossRefGoogle Scholar
  8. 8.
    Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4), 427–466 (2003)CrossRefGoogle Scholar
  9. 9.
    Finger, M., Wassermann, R., Cozman, F.G.: Satisfiability in \(\mathcal{EL}\) with sets of probabilistic ABoxes. In: Proc. DL 2011. CEUR-WS.org (2011)Google Scholar
  10. 10.
    Gottlob, G., Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Query answering under probabilistic uncertainty in Datalog+/– ontologies. Ann. Math. Artif. Intell. (in press, 2013)Google Scholar
  11. 11.
    Gottlob, G., Lukasiewicz, T., Simari, G.I.: Answering threshold queries in probabilistic Datalog+/– ontologies. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 401–414. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Jung, J.C., Lutz, C.: Ontology-based access to probabilistic data with OWL QL. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 182–197. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Lang, J., Pini, M.S., Rossi, F., Salvagnin, D., Venable, K.B., Walsh, T.: Winner determination in voting trees with incomplete preferences and weighted votes. Auton. Agent. Multi-Ag. 25(1), 130–157 (2012)CrossRefGoogle Scholar
  14. 14.
    Linden, G., Smith, B., York, J.: Industry report: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Distributed Systems Online 4(1) (2003)Google Scholar
  15. 15.
    Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Heuristic ranking in tightly coupled probabilistic description logics. In: Proc. UAI 2012, pp. 554–563. AUAI Press (2012)Google Scholar
  16. 16.
    Manoj, M., Jacob, E.: Information retrieval on internet using meta-search engines: A review. Journal of Scientific and Industrial Research 67(10), 739–746 (2008)Google Scholar
  17. 17.
    Masthoff, J.: Group modeling: Selecting a sequence of television items to suit a group of viewers. User Modeling and User-Adapted Interaction 14(1), 37–85 (2004)CrossRefGoogle Scholar
  18. 18.
    Morris, M.R.: Collaborative search revisited. In: Proc. CSCW 2013, pp. 1181–1192. ACM Press (2013)Google Scholar
  19. 19.
    Noessner, J., Niepert, M.: ELOG: A probabilistic reasoner for OWL EL. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 281–286. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Ntoutsi, I., Stefanidis, K., Norvag, K., Kriegel, H.-P.: gRecs: A group recommendation system based on user clustering. In: Lee, S.-G., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part II. LNCS, vol. 7239, pp. 299–303. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Pattanaik, P.K.: Voting and Collective Choice: Some Aspects of the Theory of Group Decision-making. Cambridge University Press (1971)Google Scholar
  22. 22.
    Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Aggregating partially ordered preferences. J. Log. Comput. 19(3), 475–502 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Taylor, A.D.: Social Choice and the Mathematics of Manipulation. Cambridge University Press (2005)Google Scholar
  24. 24.
    Wooldridge, M.: An Introduction to Multiagent Systems. Wiley (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Thomas Lukasiewicz
    • 1
  • Maria Vanina Martinez
    • 1
  • Gerardo I. Simari
    • 1
  • Oana Tifrea-Marciuska
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordUK

Personalised recommendations