Advertisement

Tomographic Methods in Hydrogeology

  • Olaf A. CirpkaEmail author
  • Carsten Leven
  • Ronnie Schwede
  • Kennedy Doro
  • Peter Bastian
  • Olaf Ippisch
  • Ole Klein
  • Arno Patzelt
Chapter
  • 1.7k Downloads
Part of the Advanced Technologies in Earth Sciences book series (ATES)

Abstract

The extraction of groundwater for drinking water purposes is one of the most important uses of the natural subsurface. Sustainable management of groundwater resources requires detailed knowledge of the hydraulic properties within the subsurface. Typically, these properties are not directly accessible. The evaluation of hydraulic properties therefore requires hydraulic stimuli of the subsurface (e.g., injection and extraction of groundwater, tracer tests, etc.) with subsequent data analysis. In this context, tomographic techniques and inversion strategies originally derived for geophysical surveying can be transferred to hydraulic applications. In addition, geophysical techniques may be used to monitor hydraulic tests. The latter requires fully coupled hydrogeophysical inversion strategies, accounting for the entire process chain from hydraulic properties via flow and transport to the application of the geophysical surveying techniques. The project “Tomographic methods in hydrogeology” focuses on the development of a geostatistical inversion method for transient tomographic data of multiple hydraulic investigation techniques, the model-based optimal design of tomographic surveys, and the development of experimental techniques and equipment for an efficient execution of tomographic surveys in a hydrogeological context using the model-based design and providing data for the inversion. In this chapter we will show selected examples of the project’s outcome. The examples include developments related to the joint geostatistical inversion of tomographic data sets, its efficient parallelization, and its application to a 3D-inversion of tomographic thermal tracer tests. Furthermore we present a method for solving the inversion of transient tomographic data sets which usually suffer from high computational efforts. Related to the acquisition of tomographic data sets, we also discuss the development of tracer-tomographic methods using heat as tracer.

Keywords

Hydraulic Conductivity Hydraulic Head Domain Decomposition Observation Well Tracer Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The project “Tomographic Methods in Hydrogeology” is part of the R&D-Programme GEOTECHNOLOGIEN. The project is funded by the German Ministry of Education and Research (BMBF). Additional funding has been provided by the Baden-Württemberg Foundation in the high-performance computing program and the German Academic Exchange Service (DAAD).

References

  1. Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968CrossRefGoogle Scholar
  2. Bastian P, Droske M, Engwer C, Klöfkorn R, Neubauer T, Ohlberger M, Rumpf M (2004) Towards a unified framework for scientific computing. In: Proceedings of the 15th conference on domain decomposition methods, edited, pp 167–174, Springer, BerlinGoogle Scholar
  3. Bastian P, Blatt M, Dedner A, Engwer C, Klofkorn R, Kornhuber R, Ohlberger M, Sander O (2008a) A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82(2–3):121–138CrossRefGoogle Scholar
  4. Bastian P, Blatt M, Dedner A, Engwer C, Klofkorn R, Ohlberger M, Sander O (2008b) A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing 82(2–3):103–119CrossRefGoogle Scholar
  5. Benett AF (1992) Inverse methods in physical oceanography. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Berg SJ, Illman WA (2011) Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system. Water Resour Res 47:W10507Google Scholar
  7. Bhaskar AS, Harvey JW, Henry EJ (2012) Resolving hyporheic and groundwater components of streambed water flux using heat as a tracer. Water Resour Res 48(8):W08524Google Scholar
  8. Blatt M (2010) A parallel algebraic multigrid method for elliptic problems with highly discontinuous coefficients. http://www.ub.uni-heidelberg.de/archiv/10856S
  9. Bohling GC (2009) Sensitivity and resolution of tomographic pumping tests in an alluvial aquifer. Water Resour Res 45:W02420Google Scholar
  10. Cardiff M, Barrash W (2011) 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response. Water Resour Res 47(12):W12518Google Scholar
  11. Cardiff M, Barrash W, Kitanidis PK (2012) A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment. Water Resour Res 48(5):W05531Google Scholar
  12. Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady-state conditions. 3. Application to synthetic and field data. Water Resour Res 22(2):228–242CrossRefGoogle Scholar
  13. Castaings W, Dartus D, Le Dimet FX, Saulnier GM (2009) Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods. Hydrol. Earth Syst Sci 13(4):503–517Google Scholar
  14. Cirpka OA, Bürger CM, Nowak W, Finkel M (2004) Uncertainty and data worth analysis for the hydraulic design of funnel-and-gate systems in heterogeneous aquifers. Water Resour Res 40(11)Google Scholar
  15. Cirpka OA, Kitanidis PK (2000) Sensitivities of temporal moments calculated by the adjoint-state method and joint inversing of head and tracer data. Adv Water Resour 24(1):89–103CrossRefGoogle Scholar
  16. Constantz J (2008) Heat as a tracer to determine streambed water exchanges. Water Resour Res 44: W00D10Google Scholar
  17. Constantz J, Cox MH, Su GW (2003) Comparison of heat and bromide as ground water tracers near streams. Ground Water 41(5):647–656CrossRefGoogle Scholar
  18. Dietrich CR, Newsam GN (1997) Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J Sci Comput 18(4):1088–1107CrossRefGoogle Scholar
  19. Dietrich P, Butler JJ, Faiss K (2008) A rapid method for hydraulic profiling in unconsolidated formations. Ground Water 46(2):323–328CrossRefGoogle Scholar
  20. Doherty J (2010a) Addendum to the PEST manual. Watermark Numerical Computing, BrisbaneGoogle Scholar
  21. Doherty J (2010b) PEST, model-independent parameter estimation-user manual, 5th edn. Watermark Numerical Computing, Brisbane (with slight additions)Google Scholar
  22. Fienen MN, Kunicki TC, Kester DE (2011) CloudPEST—a python module for cloud-computing deployment of PEST, a program for parameter estimation. Technical Report. Open-File Report 2011–1062, U.S. Geological SurveyGoogle Scholar
  23. Frigo M, Johnson SG (2005) The design and implementation of fftw3. Proc IEEE 93(2):216–231CrossRefGoogle Scholar
  24. Gómez-Hernández JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data, 1. Theory. J.Hydrol 203(1–4):163–174Google Scholar
  25. Hecht-Méndez J, Molina-Giraldo N, Blum P, Bayer P (2010) Evaluating MT3DMS for heat transport simulation of closed geothermal systems. Ground Water 48(5):741–756CrossRefGoogle Scholar
  26. Hernandez AF, Neuman SP, Guadagnini A, Carrera J (2006) Inverse stochastic moment analysis of steady state flow in randomly heterogeneous media. Water Resour Res 42(5):W05425Google Scholar
  27. Hunt RJ, Luchette J, Schreuder WA, Rumbaugh JO, Doherty J, Tonkin MJ, Rumbaugh DB (2010) Using a cloud to replenish parched groundwater modeling efforts. Ground Water 48(3):360–365CrossRefGoogle Scholar
  28. Illman WA, Berg SJ, Liu X, Massi A (2010) Hydraulic/Partitioning tracer tomography for DNAPL source zone characterization: small-scale sandbox experiments. Environ Sci Technol 44(22):8609–8614CrossRefGoogle Scholar
  29. Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing. Water Resour Res 31(10):2411–2419CrossRefGoogle Scholar
  30. Lessoff SC, Schneidewind U, Leven C, Blum P, Dietrich P, Dagan G (2010) Spatial characterization of the hydraulic conductivity using direct-push injection logging. Water Resour Res 46Google Scholar
  31. Li W, Nowak W, Cirpka OA (2005) Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown. Water Resour Res 41(8):W08403Google Scholar
  32. Li W, Englert A, Cirpka OA, Vereecken H (2008) Three-dimensional geostatistical inversion of flowmeter and pumping-test data. Ground Water 46(2):193–201CrossRefGoogle Scholar
  33. Li W, Englert A, Cirpka OA, Vanderborght J, Vereecken H (2007) 2-D-characterization of hydraulic heterogeneity by multiple pumping tests. Water Resour Res 43(4):W04433Google Scholar
  34. Luo J, Wu W-M, Fienen MN, Jardine PM, Mehlhorn TL, Watson DB, Cirpka OA, Criddle CS, Kitanidis PK (2006) A nested-cell approach for in situ remediation. Ground Water 44(2):266–274CrossRefGoogle Scholar
  35. Matheron G (1971) The theory of regionalized variables and its applications. Ecole de Mines, FontainebleauGoogle Scholar
  36. McLaughlin D, Townley L (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161CrossRefGoogle Scholar
  37. Michalak AM, Kitanidis PK (2004) Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling. Water Resour Res 40(8)Google Scholar
  38. MPI Forum (2009) The message passing interface (MPI) standard. http://www.mpi-forum.org/docs/S
  39. Neuman SP, Blattstein A, Riva M, Tartakovsky DM, Guadagnini A, Ptak T (2007) Type curve interpretation of late-time pumping test data in randomly heterogeneous aquifers. Water Resour Res 43(10)Google Scholar
  40. Nowak W, Cirpka OA (2004) A modified Levenberg-Marquardt algorithm for quasi-linear geostatistical inversing. Adv Water Resour 27(7):737–750CrossRefGoogle Scholar
  41. Nowak W, Cirpka OA (2006) Geostatistical inference of hydraulic conductivity and dispersion coefficients from hydraulic heads and tracer data. Water Resour Res 42(8):W08416. doi: 08410.01029/02005WR004832
  42. Pollock D, Cirpka OA (2010) Fully coupled hydrogeophysical inversion of synthetic salt tracer experiments. Water Resour Res 46Google Scholar
  43. Pollock D, Cirpka OA (2012) Fully coupled hydrogeophysical inversion of a laboratory salt tracer experiment monitored by electrical resistivity tomography. Water Resour Res 48Google Scholar
  44. Pollock D, Cirpka OA (2008) Temporal moments in geoelectrical monitoring of salt-tracer experiments. Water Resour Res 44(12):W12416Google Scholar
  45. RamaRao BS, LaVenue AM, deMarsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. 1. Theory and computational experiments. Water Resour Res 31(3):475–493Google Scholar
  46. Riva M, Guadagnini L, Guadagnini A, Ptak T, Martac E (2006) Probabilistic study of well capture zones distribution at the Lauswiesen field site. J Contam Hydrol 88(1–2):92–118CrossRefGoogle Scholar
  47. Riva M, Guadagnini A, Fernandez-Garcia D, Sanchez-Vila X, Ptak T (2008) Relative importance of geostatistical and transport models in describing heavily tailed breakthrough curves at the Lauswiesen site. J Contam Hydrol 101(1–4):1–13CrossRefGoogle Scholar
  48. Sack-Kühner B (1996) Einrichtung des Naturmeßfeldes Lauswiesen Tübingen: Erkundung der hydraulischen Eigenschaften, Charakterisierung der Untergrundheterogenität und Vergleich der Ergebnisse unterschiedlicher Erkundungsverfahren. Lehrstuhl für Angewandte Geologie. Tübingen, Universität Tübingen.Google Scholar
  49. Sahuquillo A, Capilla J, Gomez-Hernandez J, Andreu J (1992) Conditional simulations of transmissivity fields honoring piezometric data. In: Blain W, Canrera E (eds) Hydraulic engineering software IV. Fluid Flow Modeling. Vol 2. Elsevier Applied Science, New MexicoGoogle Scholar
  50. Schwede RL, Li W, Leven C, Cirpka OA (2014) Three-dimensional geostatistical inversion of synthetic tomographic pumping and heat-tracer tests using a novel pumping setup. Submitted to Adv Water Resour 63:77–90Google Scholar
  51. Schwede RL, Cirpka OA (2009) Use of steady-state concentration measurements in geostatistical inversion. Adv Water Resour 32(4):607–619CrossRefGoogle Scholar
  52. Schwede RL, Ngo A, Bastian P, Ippisch O, Li W, Cirpka OA (2012) Efficient parallelization of geostatistical inversion using the quasi-linear approach. Comput Geosci 44:78–85CrossRefGoogle Scholar
  53. Smith B, Bjørsted P, Gropp WD (1996) Domain decomposition. Cambridge University Press, CambridgeGoogle Scholar
  54. Sun N, Yeh W (1990) Coupled inverse problems in groundwater modeling. 1. Sensitivity analysis and parameter-identification. Water Resour Res 26(10):2507–2525CrossRefGoogle Scholar
  55. Tan B-T, Ghattas O, Higdon D (2012) Adaptive hessian-based nonstationary gaussian process response surface method for probability density approximation with application to bayesian solution of large-scale inverse problems. SIAM J Sci Comput 34(6):A2837–A2871CrossRefGoogle Scholar
  56. Valstar JR, McLaughlin DB, Stroet CBMT, van Geer FC (2004) A representer based inverse method for groundwater flow and transport applications. Water Resour Res 40(5):W05116Google Scholar
  57. Wagner V, Li T, Bayer P, Leven C, Dietrich P, Blum P (2013) Thermal tracer testing in a heterogeneous sedimentary aquifer: Field experiment and numerical simulation. Hydrol J. doi: 10.1007/s10040-013-1059-z
  58. Yeh TCJ, Jin MH, Hanna S (1996) An iterative stochastic inverse method: conditional effective transmissivity and hydraulic head fields. Water Resour Res 32(1):85–92Google Scholar
  59. Yeh T-CJ, Zhu J (2007) Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones. Water Resour Res 43(6):W06435Google Scholar
  60. Zhu J, Cai X, Jim Yeh T-C (2009) Analysis of tracer tomography using temporal moments of tracer breakthrough curves. Adv Water Resour 32(3):391–400CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Olaf A. Cirpka
    • 1
    Email author
  • Carsten Leven
    • 1
  • Ronnie Schwede
    • 1
  • Kennedy Doro
    • 1
  • Peter Bastian
    • 2
  • Olaf Ippisch
    • 2
  • Ole Klein
    • 2
  • Arno Patzelt
    • 3
  1. 1.University of TübingenCenter for Applied GeoscienceTübingenGermany
  2. 2.Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany
  3. 3.Terrana Geophysik Dr. A.Patzelt und PartnerMössingenGermany

Personalised recommendations