Advertisement

Toolbox for Applied Seismic Tomography (TOAST)

  • Thomas ForbrigerEmail author
  • Michael Auras
  • Filiz Bilgili
  • Thomas Bohlen
  • Simone Butzer
  • Sandra Christen
  • Luigia Cristiano
  • Wolfgang Friederich
  • Rüdiger Giese
  • Lisa Groos
  • Heiner Igel
  • Florian Köllner
  • Rolf Krompholz
  • Stefan Lüth
  • Stefan Mauerberger
  • Thomas Meier
  • Ilaria Mosca
  • Dirk Niehoff
  • Heike Richter
  • Martin Schäfer
  • Andreas Schuck
  • Florian Schumacher
  • Karin Sigloch
  • Mario Vormbaum
  • Frank Wuttke
Chapter
Part of the Advanced Technologies in Earth Sciences book series (ATES)

Abstract

TOAST (Toolbox for Applied Seismic Tomography) makes methods of full-waveform inversion of elastic waves available for the practitioner. The inversion of complete seismograms is an utmost ambitious and powerful technology. One of its strengths is the enormously increased imaging-resolution since it is able to resolve structures smaller than the seismic wave length. Further it is sensitive to material properties like density and dissipation which are hardly accessible through conventional techniques. Within the TOAST project algorithms available in academia were collected, improved, and prepared for application to field recordings. Different inversion strategies were implemented (global search, conjugate gradient, waveform sensitivity kernels) and computer programs for imaging the subsurface in 1D, 2D, and 3D were developed. The underlying algorithms for the correct numerical simulation of physical wave propagation have thoroughly been tested for artefacts. In parallel these techniques were tested in application to waveform data. They proved their potential in application to synthetic data, shallow-seismic surface waves from field recordings, and microseismic and ultrasonic data from material testing. This provided valuable insight to the demands on seismic observation equipment (repeatability, waveform reproduction, survey layout) and inversion strategies (initial models, regularization, alternative misfit definitions, etc.). The developed software programs, results of benchmark tests, and field-cases are published online by the OpenTOAST.de initiative.

Keywords

Rayleigh Wave Velocity Model Shear Wave Velocity Natural Stone Black Crust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The project TOAST was funded by the German Federal Ministry of Education and Research (BMBF) within the R&D programme GEOTECHNOLOGIEN (Grant: 03G0752A-F).

References

  1. Bohlen T (2002) Parallel 3-D viscoelastic finite difference seismic modeling. Comput Geosci 28:887–889CrossRefGoogle Scholar
  2. Butzer S, Kurzmann A, Bohlen T (2013) 3D elastic full-waveform inversion of small-scale heterogeneities in transmission geometry. Geophys Prospect 61(6):1238–1251. doi: 10.1111/1365-2478.12065 Google Scholar
  3. Forbriger T, Groos L, Schäfer M (in review) Line-source simulation for shallow-seismic data. Part 1: Theoretical background. Geophys J IntGoogle Scholar
  4. Friederich W, Dalkolmo J (1995) Complete synthetic seismograms for a spherically symmetric earth by a numerical computation of Green’s function in the frequency domain. Geophys J Int 122:537–550CrossRefGoogle Scholar
  5. Groos L (2013) 2D Full-waveform inversion of shallow-seismic Rayleigh waves. Dissertation, Karlsruhe Institute of Technology (KIT)Google Scholar
  6. Groos L, Schäfer M, Forbriger T, Bohlen T (in review) 2D elastic full-waveform inversion of shallow-seismic Rayleigh waves in the presence of attenuation. GeophysicsGoogle Scholar
  7. Köhn D (2011) Time domain 2D elastic full-waveform tomography. Dissertation, Christian-Albrechts-Universität zu KielGoogle Scholar
  8. Krauss F, Giese R, Alexandrakis C, Buske S (submitted) Seismic travel-time and attenuation tomography to characterize the excavation damaged zone and the surrounding rock mass of a newly excavated ramp and chamber. Int J Rock Mech Min SciGoogle Scholar
  9. Kurzmann, A. (2012) Applications of 2D and 3D full-waveform tomography in acoustic and viscoacoustic complex media. Dissertation, Karlsruhe Institute of Technology (KIT)Google Scholar
  10. Kurzmann A, Przebindowska A, Köhn D, Bohlen T (2013) Acoustic full-waveform tomography in the presence of attenuation: a sensitivity analysis. Geophys J Int 195(2):985–1000. doi: 10.1093/gji/ggt305 CrossRefGoogle Scholar
  11. Meier T, Dietrich K, Stoeckhert B, Hajes H P (2004) 1-dimensional models of the shear-wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophys J Int 156:45–58Google Scholar
  12. Mora M (1987) Nonlinear two-dimensional elastic inversion of multioffset data. Geophysics 52(9):1211–1228Google Scholar
  13. Mosca I, Meier, T, Sigloch K (submitted) Ultrasonic surface wave propagation in multi-layered structures. Geophys J IntGoogle Scholar
  14. Przebindowska A. (2013) Acoustic full-waveform inversion of marine reflection seismic data. Dissertation, Karlsruhe Institute of Technology (KIT)Google Scholar
  15. Sambridge M. (1999a) Geophysical inversion with a neighbourhood algorithms I- searching a parameter space. Geophys J Int 138:479–494Google Scholar
  16. Sambridge M (1999b) Geophysical inversion with a neighbourhood algorithms II- appraising the ensemble. Geophys J Int 138:727–746CrossRefGoogle Scholar
  17. Schäfer M, Groos L, Forbriger T, Bohlen T (in review) Line-source simulation for shallow-seismic data. Part 2: Full-waveform inversion - a 2D case study. Geophys J IntGoogle Scholar
  18. Sirgue L, Etgen J, Albertin U (2008) 3D frequency domain waveform inversion using time domain finite difference methods. In: Extended Abstracts, 70th EAGE meeting. Rome, Italy, F022Google Scholar
  19. Sirgue L, Pratt RG (2004) Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics 69(1):231–248Google Scholar
  20. Tarantola A (1988) Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation. Pure Appl Geophys 128(1/2):365–399CrossRefGoogle Scholar
  21. Tromp J, Komatitsch D, Liu Q (2008) Spectral-element and adjoint methods in seismology. Commun Comput Phys 3(1):1–32Google Scholar
  22. Zelt CA, Barton PJ (1998) 3D seismic refraction tomography: a comparison of two methods applied to data from the Faeroe Basin. J Geophys Res 103:7187–7210CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Forbriger
    • 1
    Email author
  • Michael Auras
    • 2
  • Filiz Bilgili
    • 3
  • Thomas Bohlen
    • 1
  • Simone Butzer
    • 1
  • Sandra Christen
    • 3
  • Luigia Cristiano
    • 3
  • Wolfgang Friederich
    • 4
  • Rüdiger Giese
    • 5
  • Lisa Groos
    • 1
  • Heiner Igel
    • 6
  • Florian Köllner
    • 7
  • Rolf Krompholz
    • 8
  • Stefan Lüth
    • 5
  • Stefan Mauerberger
    • 6
  • Thomas Meier
    • 3
  • Ilaria Mosca
    • 6
  • Dirk Niehoff
    • 9
  • Heike Richter
    • 5
  • Martin Schäfer
    • 1
  • Andreas Schuck
    • 7
  • Florian Schumacher
    • 4
  • Karin Sigloch
    • 6
  • Mario Vormbaum
    • 7
  • Frank Wuttke
    • 3
  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institut für Steinkonservierung e.V. MainzMainzGermany
  3. 3.Christian-Albrechts-Universität zu Kiel (CAU)KielGermany
  4. 4.Ruhr-University Bochum (RUB)BochumGermany
  5. 5.Helmholtz Centre Potsdam (GFZ)PotsdamGermany
  6. 6.Ludwig-Maximilians-University (LMU)MunichGermany
  7. 7.Geophysik und Geotechnik Leipzig GmbH (GGL)LeipzigGermany
  8. 8.Geotron Elektronik (GEOTRON)PirnaGermany
  9. 9.Dornburger Zement GmbH and Co. KGDorndorf-SteudnitzGermany

Personalised recommendations