Online Identification of Primary Social Groups

  • Dimitra Matsiki
  • Anastasios Dimou
  • Petros Daras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8326)


Online group identification is a challenging task, due to the inherent dynamic nature of groups. In this paper, a novel framework is proposed that combines the individual trajectories produced by a tracker along with a prediction of their evolution, in order to identify existing groups. In addition to the widely known criteria used in the literature for group identification, we present a novel one, which exploits the motion pattern of the trajectories. The proposed framework utilizes the past, present and predicted states of groups within a scene, to provide robust online group identification. Experiments were conducted to provide evidence of the effectiveness of the proposed method with promising results.


social groups group identification online motion prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Rodriguez, M., Ali, S., Kanade, T.: Tracking in unstructured crowded scenes. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1389–1396. IEEE (2009)Google Scholar
  3. 3.
    Saxena, S., Brémond, F., Thonnat, M., Ma, R.: Crowd behavior recognition for video surveillance. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 970–981. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Reisman, P., Mano, O., Avidan, S., Shashua, A.: Crowd detection in video sequences. In: 2004 IEEE Intelligent Vehicles Symposium, pp. 66–71. IEEE (2004)Google Scholar
  5. 5.
    Zhan, B., Remagnino, P., Velastin, S.A.: Mining paths of complex crowd scenes. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 126–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1345–1352. IEEE (2011)Google Scholar
  7. 7.
    Pellegrini, S., Ess, A., Van Gool, L.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 452–465. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Ge, W., Collins, R.T., Ruback, R.B.: Vision-based analysis of small groups in pedestrian crowds. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(5), 1003–1016 (2012)CrossRefGoogle Scholar
  9. 9.
    Cupillard, F., Brémond, F., Thonnat, M.: Tracking groups of people for video surveillance. In: Video-Based Surveillance Systems, pp. 89–100. Springer (2002)Google Scholar
  10. 10.
    Chang, M.-C., Krahnstoever, N., Ge, W.: Probabilistic group-level motion analysis and scenario recognition. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 747–754. IEEE (2011)Google Scholar
  11. 11.
    McPhail, C., Wohlstein, R.T.: Using film to analyze pedestrian behavior. Sociological Methods & Research 10(3), 347–375 (1982)CrossRefGoogle Scholar
  12. 12.
    Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning, vol. 1. Springer, New York (2006)zbMATHGoogle Scholar
  13. 13.
    Lasdas, V., Timofte, R., Van Gool, L.: Non-parametric motion-priors for flow understanding. In: Proceedings of the 2012 IEEE Workshop on the Applications of Computer Vision, WACV 2012, pp. 417–424. IEEE Computer Society, Washington, DC (2012),
  14. 14.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press (2005)Google Scholar
  15. 15.
  16. 16.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dimitra Matsiki
    • 1
  • Anastasios Dimou
    • 1
  • Petros Daras
    • 1
  1. 1.Information Technologies Institute, Centre for Research and Technology HellasThessalonikiGreece

Personalised recommendations