Advertisement

A Visual Information Retrieval System for Radiology Reports and the Medical Literature

  • Dimitrios Markonis
  • René Donner
  • Markus Holzer
  • Thomas Schlegl
  • Sebastian Dungs
  • Sascha Kriewel
  • Georg Langs
  • Henning Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8326)

Abstract

The enormous amount of visual data in Picture Archival and Communication Systems (PACS) and in the medical literature is growing exponentially. In the proposed demo, the medical image search of the KHRESMOI project is presented to solve some of the challenges of medical data management and retrieval. The system allows searching for visual information by combining content–based image retrieval (CBIR) and text retrieval in several languages using semantic concepts. 3D visual retrieval in internal hospital sources is supported by marking volumes of interest (VOI) in the data and connection to the medical literature are established to allow further investigating interesting cases. The system is demonstrated on 5TB of radiology reports with associated images and articles of the biomedical literature with over 1.7M images.

Keywords

Radiology Report Image Retrieval System Query Region Medical Data Management Visual Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Markonis, D., Holzer, M., Dung, S., Vargas, A., Langs, G., Kriewel, S., Müller, H.: A survey on visual information search behavior and requirements of radiologists. Methods of Information in Medicine 51(6), 539–548 (2012)CrossRefGoogle Scholar
  2. 2.
    Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content–based image retrieval systems in medicine–clinical benefits and future directions. International Journal of Medical Informatics 73(1), 1–23 (2004)CrossRefGoogle Scholar
  3. 3.
    Aisen, A.M., Broderick, L.S., Winer-Muram, H., Brodley, C.E., Kak, A.C., Pavlopoulou, C., Dy, J., Shyu, C.R., Marchiori, A.: Automated storage and retrieval of thin–section CT images to assist diagnosis: System description and preliminary assessment. Radiology 228(1), 265–270 (2003)CrossRefGoogle Scholar
  4. 4.
    Vredenburg, K., Mao, J., Smith, P., Carey, T.: A survey of user-centered design practice. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Changing Our World, Changing Ourselves, pp. 471–478 (2002)Google Scholar
  5. 5.
    Markonis, D., Baroz, F., Ruiz de Castaneda, R.L., Boyer, C., Müller, H.: User tests for assessing a medical image retrieval system: A pilot study. In: MEDINFO 2013 (2013)Google Scholar
  6. 6.
    Donner, R., Menze, B.H., Bischof, H., Langs, G.: Global localization of 3d anatomical structures by pre-filtered hough forests and discrete optimization. Med. Image Anal. (March 2013)Google Scholar
  7. 7.
    Dorfer, M., Donner, R., Langs, G.: Constructing an un-biased whole body atlas from clinical imaging data by fragment bundling. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 219–226. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Burner, A., Donner, R., Mayerhoefer, M., Holzer, M., Kainberger, F., Langs, G.: Texture bags: Anomaly retrieval in medical images based on local 3D-texture similarity. In: Müller, H., Greenspan, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 116–127. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Beckers, T., Dungs, S., Fuhr, N., Jordan, M., Kriewel, S., Tran, V.: An interactive search and evaluation system. Open Source Information Retrieval 9 (2012)Google Scholar
  10. 10.
    García Seco de Herrera, A., Markonis, D., Eggel, I., Müller, H.: The medGIFT group in ImageCLEFmed 2012. In: Working Notes of CLEF 2012 (2012)Google Scholar
  11. 11.
    White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc. (2010)Google Scholar
  12. 12.
    Andony, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, pp. 459–468 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dimitrios Markonis
    • 1
  • René Donner
    • 2
  • Markus Holzer
    • 2
  • Thomas Schlegl
    • 2
  • Sebastian Dungs
    • 3
  • Sascha Kriewel
    • 3
  • Georg Langs
    • 2
  • Henning Müller
    • 1
  1. 1.University of Applied Sciences, Western SwitzerlandSwitzerland
  2. 2.Medical University of ViennaViennaAustria
  3. 3.University of DuisburgDuisburgGermany

Personalised recommendations