Advertisement

Folkioneer: Efficient Browsing of Community Geotagged Images on a Worldwide Scale

  • Hatem Mousselly-Sergieh
  • Daniel Watzinger
  • Bastian Huber
  • Mario Döller
  • Elöd Egyed-Zsigmond
  • Harald Kosch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8326)

Abstract

In this paper, we introduce Folkioneer, a novel approach for browsing and exploring community-contributed geotagged images. Initially, images are clustered based on the embedded geographical information by applying an enhanced version of the CURE algorithm, and characteristic geodesic shapes are derived using Delaunay triangulation. Next, images of each geographical cluster are analyzed and grouped according to visual similarity using SURF and restricted homography estimation. At the same time, LDA is used to extract representative topics from the provided tags. Finally, the extracted information is visualized in an intuitive and user-friendly manner with the help of an interactive map.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algorithm for large databases. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, SIGMOD 1998, pp. 73–84. ACM, New York (1998)CrossRefGoogle Scholar
  2. 2.
    Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recogn. 41(10), 3224–3236 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  4. 4.
    Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Grygorash, O., Zhou, Y., Jorgensen, Z.: Minimum spanning tree based clustering algorithms. In: Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2006, pp. 73–81. IEEE Computer Society, Washington, DC (2006)Google Scholar
  6. 6.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hatem Mousselly-Sergieh
    • 1
    • 2
  • Daniel Watzinger
    • 1
  • Bastian Huber
    • 1
  • Mario Döller
    • 3
  • Elöd Egyed-Zsigmond
    • 2
  • Harald Kosch
    • 1
  1. 1.Universität PassauPassauGermany
  2. 2.Université LyonVilleurbanneFrance
  3. 3.FH KufsteinKufsteinAustria

Personalised recommendations