Task-Driven Image Retrieval Using Geographic Information

  • Peixiang Dong
  • Kuizhi Mei
  • Ji Zhang
  • Hao Lei
  • Jianping Fan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8326)

Abstract

When large-scale online geo-tagged images come into view, it is important to leverage geographic information for web image retrieval. In this paper, a geo-metadata based image retrieval system is proposed using both textual tags and visual features. This image retrieval system is especially useful for tourism related tasks such as tourism recommendation and tourism guide. First, the requested image retrieval task is classified into one of the three different types according to the retrieval purpose, and then it can be handled with specific method. Second, a WordNet hierarchy based semantic similarity is developed to measure the similarity between different cities. This semantic similarity is somehow consistent with the visual similarity. Finally, a high-level image representation method is proposed to narrow the semantic gap between the low-level visual features and high-level image concepts. The proposed algorithm is evaluated on an image set which is consisted of totally 177,158 images of 120 most popular cities all over the world collected from Flickr, and the experiments have provided very positive results.

Keywords

content-based image retrieval geographic information semantic city similarity high-level image representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  2. 2.
    Fan, J., He, X., Zhou, N., Peng, J., Jain, R.: Quantitative characterization of semantic gaps for learning complexity estimation and inference model selection. IEEE Transactions on Multimedia 14(5), 1414–1428 (2012)CrossRefGoogle Scholar
  3. 3.
    Fan, J., Keim, D.A., Gao, Y., Luo, H., Li, Z.: Justclick: Personalized image recommendation via exploratory search from large-scale flickr images. IEEE Transactions on Circuits and Systems for Video Technology 19(2), 273–288 (2009)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Hays, J., Efros, A.A.: IM2GPS: estimating geographic information from a single image. In: CVPR, pp. 1–8. IEEE (2008)Google Scholar
  6. 6.
    Liang, C.-K., Hsieh, Y.-T., Chuang, T.-J., Wang, Y., Weng, M.-F., Chuang, Y.-Y.: Learning landmarks by exploiting social media. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, Y.-P.P. (eds.) MMM 2010. LNCS, vol. 5916, pp. 207–217. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Cao, L., Luo, J., Gallagher, A., Jin, X., Han, J., Huang, T.S.: A world wide tourism recommendation system based on geotagged web photos. In: ICASSP, pp. 2274–2277. IEEE (2010)Google Scholar
  8. 8.
    Yang, Y., Gong, Z., et al.: Identifying points of interest by self-tuning clustering. In: SIGIR, pp. 883–892. ACM (2011)Google Scholar
  9. 9.
    Li, J., Qian, X., Tang, Y.Y., Yang, L., Liu, C.: GPS estimation from users’ photos. In: Li, S., El Saddik, A., Wang, M., Mei, T., Sebe, N., Yan, S., Hong, R., Gurrin, C. (eds.) MMM 2013, Part I. LNCS, vol. 7732, pp. 118–129. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Li, J., Qian, X., Tang, Y.Y., Yang, L., Mei, T.: GPS estimation for places of interest from social users uploaded photos. IEEE Transactions on Multimedia (2014)Google Scholar
  11. 11.
    Miller, G.: Wordnet: a lexical database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  12. 12.
    Fellbaum, C.: Wordnet. Theory and Applications of Ontology: Computer Applications, pp. 231–243 (2010)Google Scholar
  13. 13.
    Li, L.J., Su, H., Fei-Fei, L., Xing, E.P.: Object bank: A high-level image representation for scene classification & semantic feature sparsification. In: NIPS, pp. 1378–1386 (2010)Google Scholar
  14. 14.
    Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR, pp. 951–958. IEEE (2009)Google Scholar
  15. 15.
    Torresani, L., Szummer, M., Fitzgibbon, A.: Efficient object category recognition using classemes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 776–789. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Kennedy, L.S., Naaman, M.: Generating diverse and representative image search results for landmarks. In: WWW, pp. 297–306. ACM (2008)Google Scholar
  17. 17.
    Crandall, D.J., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the world’s photos. In: WWW, pp. 761–770. ACM (2009)Google Scholar
  18. 18.
    Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research 155, 23–36 (2006)Google Scholar
  19. 19.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  20. 20.
    Simpson, T., Crowe, M.: Wordnet.net (2005), http://opensource.ebswift.com/WordNet.Net

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peixiang Dong
    • 1
  • Kuizhi Mei
    • 1
  • Ji Zhang
    • 1
  • Hao Lei
    • 1
  • Jianping Fan
    • 2
  1. 1.Institute of Artificial Intelligence and RoboticsXi’an Jiaotong UniversityChina
  2. 2.Department of Computer Science, School of Information Science and TechnologyNorthwest UniversityXi’anChina

Personalised recommendations