Advertisement

Sparse Patch Coding for 3D Model Retrieval

  • Zhenbao Liu
  • Shuhui Bu
  • Junwei Han
  • Jun Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8326)

Abstract

3D shape retrieval is a fundamental task in many domains such as multimedia, graphics, CAD, and amusement. In this paper, we propose a 3D object retrieval approach by effectively utilizing low-level patches with initial semantics of 3D shapes, which are similar as superpixels in images. These patches are first obtained by means of stably over-segmenting 3D shape, and we adopt five representative geometric features such as shape diameter function, average geodesic distance, and heat kernel signature, to characterize these low-level patches. A large number of patches collected from shapes in a dataset are encoded into visual words by virtue of sparse coding, and input query compares with 3D models in the dataset by probability distribution of visual words. Experiments show that the proposed method achieves comparable retrieval performance to state-of-the-art methods.

Keywords

3D object retrieval Patch Sparse coding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, Z., Bu, S., Zhou, K., Gao, S., Han, J., Wu, J.: A survey on partial retrieval of 3D shapes. Journal of Computer Science and Technology 28(5), 836–851 (2013)CrossRefGoogle Scholar
  2. 2.
    Wu, H., Zha, H., Luo, T., Wang, X., Ma, S.: Global and local isometry-invariant descriptor for 3D shape comparison and partial matching. In: Proceedings of IEEE Computer Vision and Pattern Recognition, pp. 438–445 (2010)Google Scholar
  3. 3.
    Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1704–1711 (2010)Google Scholar
  4. 4.
    Sipiran, I.: Local features for partial shape matching and retrieval. In: Proceedings of ACM Multimedia, pp. 853–856 (2011)Google Scholar
  5. 5.
    Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3D SURF for robust three dimensional classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 589–602. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Kokkinos, I., Bronstein, M.M., Litman, R., Bronstein, A.M.: Intrinsic shape context descriptors for deformable shapes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 159–166 (June 2012)Google Scholar
  7. 7.
    Berretti, S., Bimbo, A.D., Pala, P.: Partial match of 3D faces using facial curves between SIFT keypoints. In: Proceedings of Eurographics Workshop on 3D Object Retrieval, pp. 117–120 (2011)Google Scholar
  8. 8.
    Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Transactions on Graphics 30(1), 1–20 (2011)CrossRefGoogle Scholar
  9. 9.
    Lavoué, G.: Combination of bag-of-words descriptors for robust partial shape retrieval. The Visual Computer 28(9), 931–942 (2012)CrossRefGoogle Scholar
  10. 10.
    Mademlis, A., Daras, P., Axenopoulos, A., Tzovaras, D., Strintzis, M.G.: Combining topological and geometrical features for global and partial 3-D shape retrieval. IEEE Transactions on Multimedia 10(5), 819–831 (2008)CrossRefGoogle Scholar
  11. 11.
    Biasotti, S., Marini, S., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence by structural descriptors of 3D shapes. Computer-Aided Design 38(9), 1002–1019 (2006)CrossRefGoogle Scholar
  12. 12.
    Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3D objects. International Journal of Computer Vision 89(2-3), 309–326 (2010)CrossRefGoogle Scholar
  13. 13.
    Cornea, N.D., Demirci, M.F., Silver, D.E., Shokoufandeh, A.C., Dickinson, S.J., Kantor, P.B.: 3D object retrieval using many-to-many matching of curve skeletons. Proceedings of Shape Modeling International, 366–371 (June 2005)Google Scholar
  14. 14.
    Liu, Z., Zhou, K., Bu, S., Sun, X.: Geometrically attributed binary tree for 3D shape matching. In: Computer Graphics International Conference (2011)Google Scholar
  15. 15.
    Gao, Y., Wang, M., Zha, Z., Tian, Q., Dai, Q., Zhang, N.: Less is more: efficient 3D object retrieval with query view selection. IEEE Transactions on Multimedia 11(5), 1007–1018 (2011)CrossRefGoogle Scholar
  16. 16.
    Gao, Y., Dai, Q., Wang, M., Zhang, N.: 3d model retrieval using weighted bipartite graph matching. Signal Processing: Image Communication 26(1), 39–47 (2011)Google Scholar
  17. 17.
    Gao, Y., Tang, J., Hong, R., Yan, S., Dai, Q., Zhang, N., Chua, T.S.: Camera constraint-free view-based 3D object retrieval. IEEE Transactions on Image Processing 21(4), 2269–2281 (2012)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-D object retrieval and recognition with hypergraph analysis. IEEE Transactions on Image Processing 21(9), 4290–4303 (2012)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Papadakis, P., Pratikakis, I., Theoharis, T., Perantonis, S.: PANORAMA-a 3D shape descriptor based on panoramic views for unsupervised 3D object retrieval. International Journal of Computer Vision 89(2-3), 177–192 (2010)CrossRefGoogle Scholar
  20. 20.
    Shan, Y., Sawhney, H.S., Matei, B., Kumar, R.: Shapeme histogram projection and matching for partial object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4), 568–577 (2006)CrossRefGoogle Scholar
  21. 21.
    Golovinskiy, A., Funkhouser, T.: Randomized cuts for 3D mesh analysis. ACM Transactions on Graphics 27(5) (2008)Google Scholar
  22. 22.
    Liu, Z., Tang, S., Bu, S., Zhang, H.: New evaluation metrics for mesh segmentation. Computers and Graphics (SMI) 37(6), 553–564 (2013)CrossRefGoogle Scholar
  23. 23.
    Ben-Chen, M., Gotsman, C., Bunin, G.: Conformal flattening by curvature prescription and metric scaling. Computer Graphics Forum (Eurographics) 28(2), 449–458 (2008)CrossRefGoogle Scholar
  24. 24.
    Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. The Visual Computer 24(4), 249–259 (2008)CrossRefGoogle Scholar
  25. 25.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Transactions on Graphics 25(4), 553–560 (2005)CrossRefGoogle Scholar
  26. 26.
    Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum (SGP) 28(5), 1383–1392 (2009)CrossRefGoogle Scholar
  27. 27.
    Bach, F., Mairal, J., Ponce, J., Sapiro, G.: Sparse coding and dictionary learning for image analysis. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  28. 28.
    Ji, R., Yao, H., Liu, W., Sun, X., Tian, Q.: Task-dependent visual-codebook compression. IEEE Transactions on Image Processing 21(4), 2282–2293 (2011)MathSciNetGoogle Scholar
  29. 29.
    Ji, R., Duan, L.Y., Chen, J., Xie, L., Yao, H., Gao, W.: Learning to distribute vocabulary indexing for scalable visual search. IEEE Transactions on Multimedia 15(1), 153–166 (2011)CrossRefGoogle Scholar
  30. 30.
    Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Proceedings of Neural Information Processing Systems, pp. 801–808 (2007)Google Scholar
  31. 31.
    Tung, T., Schmitt, F.: The augmented multiresolution reeb graph approach for content-based retrieval of 3D shapes. International Journal of Shape Modeling 11(1), 91–120 (2005)CrossRefGoogle Scholar
  32. 32.
    Tung, T., Schmitt, F., Matsuyama, T.: Topology matching for 3D video compression. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  33. 33.
    Zarpalas, D., Daras, P., Axenopoulos, A., Tzovaras, D., Strintzis, M.G.: 3D model search and retrieval using the spherical trace transform. EURASIP Journal on Advances in Signal Processing, Article 23912 (2007)Google Scholar
  34. 34.
    Chaouch, M., Verroust-Blondet, A.: 3D model retrieval based on depth line descriptor. In: Proceedings of IEEE International Conference on Multimedia and Expo. 599–602 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zhenbao Liu
    • 1
  • Shuhui Bu
    • 1
  • Junwei Han
    • 1
  • Jun Wu
    • 1
  1. 1.Northwestern Polytechnical UniversityXi’anChina

Personalised recommendations