Advertisement

Stixel on the Bus: An Efficient Lossless Compression Scheme for Depth Information in Traffic Scenarios

  • Qing Rao
  • Christian Grünler
  • Markus Hammori
  • Samarjit Chakraborty
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8325)

Abstract

The modern automotive industry has to meet the requirement of providing a safer, more comfortable and interactive driving experience. Depth information retrieved from a stereo vision system is one significant resource enabling vehicles to understand their environment. Relying on the stixel, a compact representation of depth information using thin planar rectangles, the problem of processing huge amounts of depth data in real-time can be solved. In this paper, we present an efficient lossless compression scheme for stixels, which further reduces the data volume by a factor of 3.3863. The predictor of the proposed approach is adapted from the LOCO-I (LOw COmplexity LOssless COmpression for Images) algorithm in the JPEG-LS standard. The compressed stixel data could be sent to the in-vehicle communication bus system for future vehicle applications such as autonomous driving and mixed reality systems.

Keywords

stixel lossless compression LOCO-I 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badino, H., Franke, U., Pfeiffer, D.: The Stixel World - A Compact Medium Level Representation of the 3D-World. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 51–60. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Pfeiffer, D., Franke, U.: Efficient Representation of Traffic Scenes by Means of Dynamic Stixels. In: IEEE Intelligent Vehicles Symposium (IV), pp. 217–224. IEEE Press, New York (2010)Google Scholar
  3. 3.
    Pfeiffer, D., Franke, U.: Towards a Global Optimal Multi-Layer Stixel Representation of Dense 3D Data. In: 22nd British Machine Vision Conference. British Machine Vision Association, Manchester (2011)Google Scholar
  4. 4.
    Pfeiffer, D., Gehrig, S.K., Schneider, N.: Exploiting the Power of Stereo Confidences. To Appear. In: Conference on Computer Vision and Pattern Recognition. IEEE Press, New York (2013)Google Scholar
  5. 5.
    ISO 11898-1: Road Vehicles – Controller Area Network (CAN) – Part 1: Data Link Layer and Physical Signaling (2003)Google Scholar
  6. 6.
    FlexRay Consortium: FlexRay Communications System-Protocol Specification, Version 2.1, Revision A (2005)Google Scholar
  7. 7.
    Weinberger, M.J.: LOCO-I: A Low Complexity, Context-based, Lossless Image Compression Algorithm. In: Data Compression Conference, pp. 140–149. IEEE Press, New York (1996)Google Scholar
  8. 8.
    Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS. IEEE Transactions on Image Processing 9(8), 1309–1324 (2000)CrossRefGoogle Scholar
  9. 9.
    Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-frame Stereo Correspondence Algorithms. International Journal of Computer Vision 47, 7–42 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hirschmüller, H.: Improvements in Real-time Correlation-based Stereo Vision. In: IEEE Workshop on Stereo and Multi-Baseline Vision, pp. 141–148. IEEE Press, New York (2001)CrossRefGoogle Scholar
  11. 11.
    Hirschmüller, H., Innocent, P.R., Garibaldi, J.M.: Real-time Correlation-based Stereo Vision with Reduced Border Errors. International Journal of Computer Vision 47, 229–246 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ding, J., Du, X., Wang, X., Liu, J.: Improved Real-time Correlation-based FPGA Stereo Vision System. In: International Conference on Mechatronics and Automation, pp. 104–108. IEEE Press, New York (2010)Google Scholar
  13. 13.
    Hirschmüller, H.: Accurate and Efficient Stereo Processing by Semi-global Matching and Mutual Information. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 807–814. IEEE Press, New York (2005)Google Scholar
  14. 14.
    Gehrig, S.K., Eberli, F., Meyer, T.: A Real-time Low-power Stereo Engine Using Semi-global Matching. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 134–143. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Badino, H., Mester, R., Vaudrey, T., Franke, U.: Stereo-based Free Space Computation in Complex Traffic Scenarios. In: IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 189–192. IEEE Press, New York (2008)Google Scholar
  16. 16.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  17. 17.
    Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE 40(9), 1098–1101 (1952)CrossRefGoogle Scholar
  18. 18.
    Golomb, S.W.: Run-length Encodings. IEEE Transactions on Information Theory 12(3), 399–401 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Howard, P.G., Vitter, J.S.: Fast and Efficient Lossless Image Compression. In: Data Compression Conference, pp. 351–360. IEEE Press, New York (1993)Google Scholar
  20. 20.
    Wu, X., Memon, N.: Context-based, Adaptive, Lossless Image Coding. IEEE Transactions on Communications 45(4), 437–444 (1997)CrossRefGoogle Scholar
  21. 21.
    Gallager, R., Voorhis, D.V.: Optimal Source Codes for Geometrically Distributed Integer Alphabets. IEEE Transactions on Information Theory 21(2), 228–230 (1975)CrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, Z., Qian, L., Bo, Y., Li, H.: An Improved Lossless Image Compression Algorithm LOCO-R. In: International Conference on Computer Design and Applications, vol. 1, pp. (V1)328–(V1)331. IEEE Press, New York (2010)Google Scholar
  23. 23.
    Zlib Home Page, http://www.zlib.net/
  24. 24.
    Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE Transactions on Information Theory 23(3), 337–343 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Zimmermann, W., Schmidgall, R.: Bussysteme in der Fahrzeugtechnik: Protokolle und Standards (2. Auflage) (German Edition). Vieweg Verlag, Wiesbaden (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Qing Rao
    • 1
  • Christian Grünler
    • 1
  • Markus Hammori
    • 1
  • Samarjit Chakraborty
    • 2
  1. 1.Research and DevelopmentDaimler AGSindelfingenGermany
  2. 2.Technische Universität MünchenMünchenGermany

Personalised recommendations