Notes on the Simplification of the Morse-Smale Complex

  • David Günther
  • Jan Reininghaus
  • Hans-Peter Seidel
  • Tino Weinkauf
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


The Morse-Smale complex can be either explicitly or implicitly represented. Depending on the type of representation, the simplification of the Morse-Smale complex works differently. In the explicit representation, the Morse-Smale complex is directly simplified by explicitly reconnecting the critical points during the simplification. In the implicit representation, on the other hand, the Morse-Smale complex is given by a combinatorial gradient field. In this setting, the simplification changes the combinatorial flow, which yields an indirect simplification of the Morse-Smale complex. The topological complexity of the Morse-Smale complex is reduced in both representations. However, the simplifications generally yield different results. In this chapter, we emphasize properties of the two representations that cause these differences. We also provide a complexity analysis of the two schemes with respect to running time and memory consumption.


Height Difference Explicit Representation Memory Consumption Implicit Representation Separation Line 



This research is supported and funded by the Digiteo unTopoVis project, the TOPOSYS project FP7-ICT-318493-STREP, and MPC-VCC.


  1. 1.
    U. Bauer, Persistence in discrete Morse theory. PhD thesis, University of Göttingen, 2011Google Scholar
  2. 2.
    T. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, Y. Wang, Persistent heat signature for pose-oblivious matching of incomplete models. CGF 29(5), 1545–1554 (2010)Google Scholar
  3. 3.
    H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Morse-Smale complexes for piecewise linear 3-manifolds, in 19th Annual Proceedings of SoCG, San Diego (ACM, New York, 2003), pp. 361–370Google Scholar
  4. 4.
    H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical Morse complexes for piecewise linear 2-manifolds. Discret. Comput. Geom. 30, 87–107 (2003)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification. Discret. Comput. Geom. 28, 511–533 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    R. Forman, A user’s guide to discrete Morse theory, in Proceedings of the 2001 International Conference on Formal Power Series and Algebraic Combinatorics, USA. Advances in Applied Mathematics (2001)Google Scholar
  7. 7.
    D. Günther, Topological analysis of discrete scalar data. PhD thesis, Saarland University, Saarbrücken, Germany, 2012Google Scholar
  8. 8.
    D. Günther, J. Reininghaus, H. Wagner, I. Hotz, Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory. Vis. Comput. 28, 959–969 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Gyulassy, Combinatorial construction of Morse-Smale complexes for data analysis and visualization. PhD thesis, University of California, Davis, 2008Google Scholar
  10. 10.
    A. Gyulassy, P.-T. Bremer, V. Pascucci, B. Hamann, Practical considerations in Morse-Smale complex computation, in Proceedings of the TopoInVis, Zurich (Springer, 2011), pp. 67–78Google Scholar
  11. 11.
    A. Gyulassy, V. Natarajan, V. Pascucci, B. Hamann, Efficient computation of Morse-Smale complexes for three-dimensional scalar functions. TVCG 13, 1440–1447 (2007)Google Scholar
  12. 12.
    M. Joswig, M.E. Pfetsch, Computing optimal Morse matchings. SIAM J. Discret. Math. 20(1), 11–25 (2006)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    H. King, K. Knudson, N. Mramor, Generating discrete Morse functions from point data. Exp. Math. 14(4), 435–444 (2005)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    T. Lewiner, Geometric discrete Morse complexes. PhD thesis, PUC-Rio, 2005Google Scholar
  15. 15.
    T. Lewiner, H. Lopes, G. Tavares, Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26(3), 221–233 (2003)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    J. Milnor, Morse Theory (Princeton University Press, Princeton, 1963)MATHGoogle Scholar
  17. 17.
    M. Morse, The Calculus of Variations in the Large. Colloquium Publications, vol. 18 (AMS, New York, 1934)Google Scholar
  18. 18.
    J. Reininghaus, Computational discrete Morse theory. PhD thesis, Freie Universität, 2012Google Scholar
  19. 19.
    V. Robins, P.J. Wood, A.P. Sheppard, Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE PAMI 33(8), 1646–1658 (2011)CrossRefGoogle Scholar
  20. 20.
    N. Shivashankar, V. Natarajan, Parallel computation of 3D Morse-Smale complexes. Comput. Graph. Forum 31(3pt1), 965–974 (2012)Google Scholar
  21. 21.
    S. Smale, On gradient dynamical systems. Ann. Math. 74, 199–206 (1961)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    H. Theisel, T. Weinkauf, H.-C. Hege, H.-P. Seidel, On the applicability of topological methods for complex flow data, in Proceedings of the TopoInVis, Grimma (Springer, 2007), pp. 105–120Google Scholar
  23. 23.
    G. Weber, S. Dillard, H. Carr, V. Pascucci, B. Hamann, Topology-controlled volume rendering. IEEE Trans. Vis. Comput. Graph. 13(2), 330–341 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David Günther
    • 1
  • Jan Reininghaus
    • 2
  • Hans-Peter Seidel
    • 3
  • Tino Weinkauf
    • 1
  1. 1.CNRS LTCI, Institut Mines-Télécom, Télécom ParisTechParisFrance
  2. 2.IST AustriaKlosterneuburgAustria
  3. 3.MPI for InformaticsSaarbrückenGermany

Personalised recommendations