Advertisement

Distributed Contour Trees

  • Dmitriy Morozov
  • Gunther H. Weber
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements.

We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local–global representation, we illustrate how different problems that rely on contour trees can be solved in parallel with minimal communication.

Keywords

Local Domain Global Representation Topological Descriptor Smale Complex Reeb Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. DOE under Contract No. DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory) through the grant “Topology-based Visualization and Analysis of High-dimensional Data and Time-varying Data at the Extreme Scale,” program manager Lucy Nowell.

References

  1. 1.
    L. Arge, M. Revsbaek, I/O-efficient contour tree simplification, in Proceedings of the International Symposium on Algorithms and Computation, Honolulu. LNCS 5878 (Springer, Berlin/Heidelberg, 2009), pp. 1155–1165Google Scholar
  2. 2.
    H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions. Comput. Geom. Theory Appl. 24(2), 75–94 (2003)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    H. Carr, J. Snoeyink, M. van de Panne, Flexible isosurfaces: simplifying and displaying scalar topology using the contour tree. Comput. Geom. Theory Appl. 43(1), 42–58 (2010)CrossRefMATHGoogle Scholar
  4. 4.
    Y.-J. Chiang, X. Lu, Progressive simplification of tetrahedral meshes preserving all isosurface topologies. Comput. Graph. Forum 22(3), 493–504 (2003)CrossRefGoogle Scholar
  5. 5.
    H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, C. Harrison, G.H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E.W. Bethel, D. Camp, O. Rübel, M. Durant, J.M. Favre, P. Navrátil, VisIt: an end-user tool for visualizing and analyzing very large data, in High Performance Visualization—Enabling Extreme-Scale Scientific Insight (CRC, Hoboken, 2012), pp. 357–372Google Scholar
  6. 6.
    H. Edelsbrunner, J. Harer, Persistent Homology—A survey. Volume 453 of Contemporary Mathematics (AMS, Providence, 2008), pp. 257–282Google Scholar
  7. 7.
    A. Gyulassy, V. Pascucci, T. Peterka, R. Ross, The parallel computation of Morse–Smale complexes, in IEEE IPDPS, Shanghai, 2012, pp. 484–495Google Scholar
  8. 8.
    C. Harrison, H. Childs, K.P. Gaither, Data-parallel mesh connected components labeling and analysis, in Proceedings of the 11th EG PGV, Switzerland, 2011, pp. 131–140Google Scholar
  9. 9.
    M. Hilaga, Y. Shinagawa, T. Kohmura, T.L. Kunii, Topology matching for fully automatic similarity estimation of 3D shapes, in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, Los Angeles, 2001, pp. 203–212Google Scholar
  10. 10.
    W. E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)CrossRefGoogle Scholar
  11. 11.
    K.-L. Ma, J.S. Painter, C.D. Hansen, M.F. Krogh, Parallel volume rendering using binary-swap compositing. IEEE Comput. Graph. Appl. 14(4), 59–68 (1994)CrossRefGoogle Scholar
  12. 12.
    S. Molnar, M. Cox, D. Ellsworth, H. Fuchs, A sorting classification of parallel rendering. IEEE Comput. Graph. Appl. 14(4), 23–32 (1994)CrossRefGoogle Scholar
  13. 13.
    C. Montani, R. Scateni, R. Scopigno, A modified look-up table for implicit disambiguation of marching cubes. Vis. Comput. 10(6), 353–355 (1994)CrossRefGoogle Scholar
  14. 14.
    D. Morozov, G.H. Weber, Distributed merge trees, in Proceedings of the ACM Symposium Principles and Practice of Parallel Programming, Shenzhen, 2013, pp. 93–102Google Scholar
  15. 15.
    G. Nielson, On marching cubes. IEEE Trans. Vis. Comput. Graph. 9(3), 341–351 (2003)CrossRefGoogle Scholar
  16. 16.
    V. Pascucci, K. Cole-McLaughlin, Parallel computation of the topology of level sets. Algorithmica 38(1), 249–268 (2003)CrossRefMathSciNetGoogle Scholar
  17. 17.
    T. Peterka, D. Goodell, R. Ross, H.-W. Shen, R. Thakur, A configurable algorithm for parallel image-compositing applications, in Proceedings of the SC, Portland, 2009, pp. 4:1–4:10Google Scholar
  18. 18.
    G. Reeb, Sur les points singuliers d’une forme de pfaff complètement intégrable ou d’une fonction numérique. CR Acad. Sci. 222, 847–849 (1946)MATHMathSciNetGoogle Scholar
  19. 19.
    N. Shivashankar, V. Natarajan, Parallel computation of 3D Morse–Smale complexes. Comput. Graph. Forum 31, 965–974 (2012)CrossRefGoogle Scholar
  20. 20.
    N. Shivashankar, M. Senthilnathan, V. Natarajan, Parallel computation of 2D Morse–Smale complexes. IEEE Trans. Vis. Comput. Graph. 18(10), 1757–1770 (2012)CrossRefGoogle Scholar
  21. 21.
    D.M. Ushizima, D. Morozov, G.H. Weber, A.G. Bianchi, J.A. Sethian, E.W. Bethel, Augmented topological descriptors of pore networks for material science. IEEE Trans. Vis. Comput. Graph. 18(12), 2041–2050 (2012)CrossRefGoogle Scholar
  22. 22.
    M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, D. Schikore, Contour trees and small seed sets for isosurface traversal, in Proceedings of the Annual Symposium Computational Geometry, New York, 1997, pp. 212–220Google Scholar
  23. 23.
    G.H. Weber, P.-T. Bremer, M.S. Day, J.B. Bell, V. Pascucci, Feature tracking using reeb graphs, in Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications (Springer, Berlin/Heidelberg, 2011) pp. 241–253Google Scholar
  24. 24.
    G.H. Weber, S.E. Dillard, H. Carr, V. Pascucci, B. Hamann, Topology-controlled volume rendering. IEEE Trans. Vis. Comput. Graph. 13(2), 330–341 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Computational Research DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations