Topological Features in Glyph-Based Corotation Visualization

  • Sohail Shafii
  • Harald Obermaier
  • Bernd Hamann
  • Kenneth I. Joy
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


This chapter introduces a novel method for vortex detection in flow fields based on the corotation of line segments and glyph rendering. The corotation measure is defined as a point-symmetric scalar function on a sphere, suitable for direct representation in the form of a three-dimensional glyph. Appropriate placement of these glyphs in the domain of a flow field makes it possible to depict vortical features present in the flow. We demonstrate how topological analysis of this novel glyph-based representation of vortex features can reveal vortex characteristics that lie beyond the capabilities of visualization techniques that consider vortex direction and magnitude information only.


Vortex Core Topological Analysis Vortex Street Deviatoric Strain Velocity Gradient Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the Materials Design Institute, funded by the UC Davis/LANL Research Collaboration (LANL Agreement No. 75782-001-09). It was also supported by the NSF under contracts IIS 0916289 and IIS 1018097, the Office of Advanced Scientific Computing Research, Office of Science, of the US DOE under Contract No. DE-FC02-06ER25780 through the SciDAC programs VACET, and contract DE-FC02-12ER26072, SDAV Institute. We thank Simon Stegmaier for making available his software [16].


  1. 1.
    V. Kolář, P. Moses, J. Sistek, Local corotation of line segments and vortex identification, in Proceedings of the Seventeenth Australasian Fluid Mechanics Conference, Auckland, ed. by G. Mallinson, J. Cater (2010), pp. 251–254Google Scholar
  2. 2.
    J.C.R. Hunt, A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, 1988, pp. 193–208Google Scholar
  3. 3.
    U. Dallmann, Topological structures of three-dimensional vortex flow separation, in 16th American Institute of Aeronautics and Astronautics, Fluid and Plasma Dynamics Conference, Danvers, 1983Google Scholar
  4. 4.
    H. Vollmers, H. Kreplin, H. Meier, Separation and vortical-type flow around a prolate spheroid-evaluation of relevant parameters, in Proceedings of the AGARD Symposium on Aerodynamics of Vortical Type Flows in Three Dimensions, Rotterdam, 1983, pp. 14-1–14-14Google Scholar
  5. 5.
    M. Chong, A. Perry, B. Cantwell, A general classification of three-dimensional flow fields. Phys. Fluids 2, 765–777 (1990)CrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Jeong, F. Hussain, On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    V. Kolář, Vortex identification: new requirements and limitations. Intern. J. Heat Fluid Flow 28(4), 638–652 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Roth, R. Peikert, A higher-order method for finding vortex core lines, in Proceedings of the Conference on Visualization’98, Minneapolis (IEEE, 1998), pp. 143–150Google Scholar
  9. 9.
    D. Sujudi, R. Haimes, Identification of swirling flow in 3D vector fields, in AIAA 12th Computational Fluid Dynamics Conference Paper, San Diego, 1995, pp. 95–1715.Google Scholar
  10. 10.
    D. Kenwright, R. Haimes, Automatic vortex core detection. IEEE Comput. Graph. Appl. 18, 70–74 (1998)CrossRefGoogle Scholar
  11. 11.
    B. Singer, D. Banks, A predictor-corrector scheme for vortex identification. Technical report, TR-94–11, 1994Google Scholar
  12. 12.
    D. Banks, B. Singer, Vortex tubes in turbulent flows: identification, representation, reconstruction, in Proceedings of the Conference on Visualization’94, Washington, DC (IEEE, 1994), pp. 132–139Google Scholar
  13. 13.
    D.C. Banks, B.A. Singer, A predictor-corrector technique for visualizing unsteady flow. IEEE Trans. Vis. Comput. Graph. 1, 151–163 (1995)CrossRefGoogle Scholar
  14. 14.
    J. Sahner, T. Weinkauf, H. Hege, Galilean invariant extraction and iconic representation of vortex core lines, in IEEE VGTC Symposium on Visualization, Leeds, 2005, pp. 151–160Google Scholar
  15. 15.
    J. Sahner, T. Weinkauf, N. Teuber, H.C. Hege, Vortex and strain skeletons in eulerian and lagrangian frames. IEEE Trans. Vis. Comput. Graph. 13(5), 980–990 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Stegmaier, U. Rist, T. Ertl, Opening the can of worms: an exploration tool for vortical flows, in IEEE Visualization Conference, Minneapolis, 2005, pp. 463–470Google Scholar
  17. 17.
    T. Schafhitzel, D. Weiskopf, T. Ertl, Interactive investigation and visualization of 3D vortex structures, in Electronic Proceedings of 12th International Symposium on Flow Visualization, Gottingen, Sept 2006Google Scholar
  18. 18.
    T. Schafhitzel, J. Vollrath, J. Gois, D. Weiskopf, A. Castelo, T. Ertl, Topology-preserving λ2-based vortex core line detection for flow visualization, in Computer Graphics Forum, vol. 27 (Wiley Online Library, 2008), pp. 1023–1030Google Scholar
  19. 19.
    K. Baysal, T. Schafhitzel, T. Ertl, U. Rist, Extraction and visualization of flow features, in Imaging Measurement Methods for Flow Analysis. Volume 106 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, ed. by W. Nitsche, C. Dobriloff (Springer, Berlin/Heidelberg, 2009), pp. 305–314Google Scholar
  20. 20.
    F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, H. Doleisch, The state of the art in flow visualisation: feature extraction and tracking. Comput. Graph. Forum 22, 775–792 (2003)CrossRefGoogle Scholar
  21. 21.
    M. Jiang, R. Machiraju, D. Thompson, Detection and visualization of vortices, in The Visualization Handbook, ed. by C.D. Hansen, C.R. Johnson (Elsevier, Amsterdam, 2005), pp. 295–309CrossRefGoogle Scholar
  22. 22.
    C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, G. Scheuermann, Surface techniques for vortex visualization, in VisSym, Konstanz, 2004, pp. 155–164Google Scholar
  23. 23.
    M. Jankun-Kelly, M. Jiang, D. Thompson, R. Machiraju, Vortex visualization for practical engineering applications. IEEE Trans. Vis. Comput. Graph. 12(5), 957–964 (2006)CrossRefGoogle Scholar
  24. 24.
    X. Tricoche, C. Garth, G. Kindlmann, E. Deines, G. Scheuermann, M. Ruetten, C. Hansen, Visualization of intricate flow structures for vortex breakdown analysis, in Proceedings of the Conference on Visualization, VIS’04, Washington, DC (IEEE, 2004), pp. 187–194Google Scholar
  25. 25.
    C.D. Shaw, D.S. Ebert, J.M. Kukla, A. Zwa, I. Soboroff, D.A. Roberts, Data visualization using automatic perceptually motivated shapes, in SPIE Conference on Visual Data Exploration and Analysis, San Jose, 1998, pp. 208–213Google Scholar
  26. 26.
    F.H. Post, F.J. Post, T.V. Walsum, D. Silver, Iconic techniques for feature visualization, in Proceedings of the 6th Conference on Visualization, VIS’95, Washington, DC (IEEE, 1995), pp. 288–295Google Scholar
  27. 27.
    A. Wiebel, S. Koch, G. Scheuermann, Glyphs for non-linear vector field singularities, in Topological Methods in Data Analysis and Visualization II, ed. by R. Peikert, H. Hauser, H. Carr, R. Fuchs. Mathematics and Visualization (Springer, Berlin/Heidelberg, 2012), pp. 177–190Google Scholar
  28. 28.
    G. Kindlmann, Superquadric tensor glyphs, in Proceedings of the Sixth Joint Eurographics – IEEE TCVG Conference on Visualization, VISSYM’04, Aire-la-Ville (Eurographics Association, 2004), pp. 147–154Google Scholar
  29. 29.
    T. Schultz, C.F. Westin, G. Kindlmann, Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework, in Proceedings of the 13th International Conference on Medical Image Computing and Computer-Assisted Intervention: Part I, MICCAI’10, Beijing (Springer, Berlin/Heidelberg, 2010), pp. 674–681Google Scholar
  30. 30.
    T. Schultz, Towards resolving fiber crossings with higher order tensor inpainting, in New Developments in the Visualization and Processing of Tensor Fields, ed. by D.H. Laidlaw, A. Vilanova. Mathematics and Visualization (Springer, Berlin/Heidelberg, 2012), pp. 253–265Google Scholar
  31. 31.
    T. Peeters, V. Prckovska, M. van Almsick, A. Vilanova, B. ter Haar Romeny, Fast and sleek glyph rendering for interactive hardi data exploration, in Visualization Symposium, PacificVis’09, Beijing (IEEE, Apr 2009), pp. 153–160Google Scholar
  32. 32.
    M. van Almsick, T.H. Peeters, V. Prc̆kovska, A. Vilanova, B. ter Haar Romeny, GPU-based ray-casting of spherical functions applied to high angular resolution diffusion imaging. IEEE Trans. Visual. Comput. Graph. 17(5), 612–625 (2011)Google Scholar
  33. 33.
    R. Borgo, J. Kehrer, D.H.S. Chung, E. Maguire, R.S. Laramee, H. Hauser, M. Ward, M. Chen, Glyph-based visualization: foundations, design guidelines, techniques and applications, in Eurographics State of the Art Reports (EG STARs, Eurographics Association, May 2013), pp. 39–63.
  34. 34.
    T. Schultz, G. Kindlmann, A maximum enhancing higher-order tensor glyph. Comput. Graph. Forum 29(3), 1143–1152 (2010)CrossRefGoogle Scholar
  35. 35.
    S. Beucher, F. Meyer, The morphological approach to segmentation: the watershed transformation (Mathematical morphology in image processing). Opt. Eng. 34, 433–481 (1993)Google Scholar
  36. 36.
    H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions. Comput. Geom. Theory Appl. 24(2), 75–94 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    C. Hung, P. Buning, Simulation of blunt-fin-induced shock-wave and turbulent boundary-layer interaction. J. Fluid Mech. 154(1), 163–185 (1985)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sohail Shafii
    • 1
  • Harald Obermaier
    • 1
  • Bernd Hamann
    • 1
  • Kenneth I. Joy
    • 1
  1. 1.Department of Computer Science, Institute for Data Analysis and VisualizationUniversity of CaliforniaDavisUSA

Personalised recommendations