Definition, Extraction, and Validation of Pore Structures in Porous Materials

  • Ulrike Homberg
  • Daniel Baum
  • Alexander Wiebel
  • Steffen Prohaska
  • Hans-Christian Hege
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


An intuitive and sparse representation of the void space of porous materials supports the efficient analysis and visualization of interesting qualitative and quantitative parameters of such materials. We introduce definitions of the elements of this void space, here called pore space, based on its distance function, and present methods to extract these elements using the extremal structures of the distance function. The presented methods are implemented by an image-processing pipeline that determines pore centers, pore paths and pore constrictions. These pore space elements build a graph that represents the topology of the pore space in a compact way. The representations we derive from μCT image data of realistic soil specimens enable the computation of many statistical parameters and, thus, provide a basis for further visual analysis and application-specific developments. We introduced parts of our pipeline in previous work. In this chapter, we present additional details and compare our results with the analytic computation of the pore space elements for a sphere packing in order to show the correctness of our graph computation.


Pore Space Voronoi Diagram Unstable Manifold Edge Point Voronoi Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partly funded by the German Research Foundation (DFG) in the project “Conditions of suffosive erosion phenomena in soil”. Special thanks go to Norbert Lindow for providing his implementation of the Voronoi graph algorithm.


  1. 1.
    R. Al-Raoush, K. Thompson, C.S. Willson, Comparison of network generation techniques for unconsolidated porous media. Soil Sci. Soc. Am. J. 67(6), 1687–1700 (2003)CrossRefGoogle Scholar
  2. 2.
    R. Binner, U. Homberg, S. Prohaska, U. Kalbe, K.J. Witt, Identification of descriptive parameters of the soil pore structure using experiments and CT data, in Proceedings of the 5th International Conference Scour and Erosion (ICSE-5), San Francisco, 2010, pp. 397–407Google Scholar
  3. 3.
    M.E. Coles, R.D. Hazlett, P. Spanne, W.E. Soll, E.L. Muegge, K.W. Jones, Pore level imaging of fluid transport using synchrotron X-ray microtomography. J. Pet. Sci. Eng. 19(1–2), 55–63 (1998)CrossRefGoogle Scholar
  4. 4.
    H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical Morse complexes for piecewise linear 2-manifolds, in Proceedings of the 17th Annual Symposium on Computational Geometry, Medford (ACM, 2001), pp. 70–79Google Scholar
  5. 5.
    H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification. Discret. Comput. Geom. 28(4), 511–533 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    R. Glantz, Porennetzwerke von Erdstoff-Filtern: mathematisch-morphologische Beschreibung kernspintomographischer Aufnahmen. Ph.D. thesis, University Karlsruhe, Karlsruhe, 1997Google Scholar
  7. 7.
    R. Glantz, M. Hilpert, Dual models of pore spaces. Adv. Water Resour. 30(2), 227–248 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa, A. Higginbotham, B. Hamann, Topologically clean distance fields. IEEE Trans. Vis. Comput. Graph. 13(6), 1432–1439 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Hadwiger, L. Fritz, C. Rezk-Salama, T. Höllt, G. Geier, T. Pabel, Interactive volume exploration for feature detection and quantification in industrial CT data. IEEE Trans. Vis. Comput. Graph. 14(6), 1507–1514 (2008)CrossRefGoogle Scholar
  10. 10.
    U. Homberg, D. Baum, S. Prohaska, U. Kalbe, K.J. Witt, Automatic extraction and analysis of realistic pore structures from μCT data for pore space characterization of graded soil, in Proceedings of the 6th International Conference Scour and Erosion (ICSE-6), Paris, 2012, pp. 66–73Google Scholar
  11. 11.
    U. Homberg, R. Binner, S. Prohaska, V.J. Dercksen, A. Kuß, U. Kalbe, Determining geometric grain structure from X-ray micro-tomograms of gradated soil, in Internal Erosion, ed. by K.J. Witt. Schriftenreihe Geotechnik, Bauhaus-Universität Weimar, vol. 21 (2009), pp. 37–52Google Scholar
  12. 12.
    M.W. Jones, J.A. Bærentzen, M. Sramek, 3D distance fields: a survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12(4), 581–599 (2006)CrossRefGoogle Scholar
  13. 13.
    N. Lindow, D. Baum, H.C. Hege, Voronoi-based extraction and visualization of molecular paths. IEEE Trans. Vis. Comput. Graph. 17(12), 2025–2034 (2011)CrossRefGoogle Scholar
  14. 14.
    W.B. Lindquist, S.M. Lee, D.A. Coker, K.W. Jones, P. Spanne, Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J. Geophys. Res. 101(B4), 8297–8310 (1996)CrossRefGoogle Scholar
  15. 15.
    W.B. Lindquist, A. Venkatarangan, J. Dunsmuir, T. Wong, Pore and throat size distributions measured from synchrotron X-ray tomographic images of fontainebleau sandstones. J. Geophys. Res. 105(B9), 21509–21527 (2000)CrossRefGoogle Scholar
  16. 16.
    A. Pierret, Y. Capowiez, L. Belzunces, C.J. Moran, 3d reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma 106(3–4), 247–271 (2002)CrossRefGoogle Scholar
  17. 17.
    S. Prohaska, Skeleton-based visualization of massive voxel objects with network-like architecture. Ph.D. thesis, University of Potsdam, 2007Google Scholar
  18. 18.
    C. Pudney, Distance-ordered homotopic thinning: a skeletonization algorithm for 3d digital images. Comput. Vis. Image Underst. 72(3), 404–413 (1998)CrossRefGoogle Scholar
  19. 19.
    N. Reboul, E. Vincens, B. Cambou, A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres. Granul. Matter 10(6), 457–468 (2008)CrossRefzbMATHGoogle Scholar
  20. 20.
    F. Rezanezhad, W.L. Quinton, J.S. Price, D. Elrick, T.R. Elliot, R.J. Heck, Examining the effect of pore size distribution and shape on flow through unsaturated peat using 3-d computed tomography. Hydrol. Earth Syst. Sci. 13(10), 1993–2002 (2009)CrossRefGoogle Scholar
  21. 21.
    J.B.T.M. Roerdink, A. Meijster, The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inform. 41(1–2), 187–228 (2001)MathSciNetGoogle Scholar
  22. 22.
    D. Silin, T. Patzek, Pore space morphology analysis using maximal inscribed spheres. Phys. A: Stat. Theor. Phys. 371(2), 336–360 (2006)CrossRefGoogle Scholar
  23. 23.
    S.M. Sweeney, C.L. Martin, Pore size distributions calculated from 3-D images of DEM-simulated powder compacts. Acta Mater. 51(12), 3635–3649 (2003)CrossRefGoogle Scholar
  24. 24.
    K.E. Thompson, C.S. Willson, C.D. White, S. Nyman, J.P. Bhattacharya, A.H. Reed, Application of a new grain-based reconstruction algorithm to microtomography images for quantitative characterization and flow modeling. SPE J. 13(2), 164–176 (2008)CrossRefGoogle Scholar
  25. 25.
    D.M. Ushizima, D. Morozov, G.H. Weber, A.G.C. Bianchi, E.W. Bethel, Augmented topological descriptors of pore networks for material science. IEEE Trans. Vis. Comput. Graph. 18(12), 2041–2050 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ulrike Homberg
    • 1
  • Daniel Baum
    • 1
  • Alexander Wiebel
    • 1
  • Steffen Prohaska
    • 1
  • Hans-Christian Hege
    • 1
  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations