A Comparison of Finite-Time and Finite-Size Lyapunov Exponents

  • Ronald Peikert
  • Armin Pobitzer
  • Filip Sadlo
  • Benjamin Schindler
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Finite-time and finite-size Lyapunov exponents are related concepts that have been used for the purpose of identifying transport structures in time-dependent flow. The preference for one or the other concept seems to be based more on a tradition within a scientific community than on proven advantages. In this study, we demonstrate that with the two concepts highly similar visualizations can be produced, by maximizing a simple similarity measure. Furthermore, we show that results depend crucially on the numerical implementation of the two concepts.

Notes

Acknowledgements

We wish to thank Tomas Torsvik, Uni Research, Uni Computing (Bergen, Norway), for the tidal flow data. This work was funded in part by the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number 226042 (project SemSeg) and the Swiss National Science Foundation, under grant number 200020_140556.

References

  1. 1.
    E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, A. Vulpiani, Growth of noninfinitesimal perturbations in turbulence. Phys. Rev. Lett. 77, 1262–1265 (1996)CrossRefGoogle Scholar
  2. 2.
    G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Lyapunov characteristic exponent for smooth dynamical systems and hamiltonian systems: a method for computing all of them. Mechanica 15, 9–20 (1980)CrossRefMATHGoogle Scholar
  3. 3.
    J. Berntsen, User guide for a modesplit σ-coordinate ocean model. Version 4.1. Technical report, Department of Mathematics, University of Bergen, Norway, 2004Google Scholar
  4. 4.
    F.J. Beron-Vera, M.J. Olascoaga, M.G. Brown, H. Kocak, I.I. Rypina, Invariant-tori-like lagrangian coherent structures in geophysical flows. Chaos 20(1), 1–13 (2010)CrossRefMathSciNetGoogle Scholar
  5. 5.
    G. Boffetta, G. Lacorata, G. Redaelli, A. Vulpiani, Detecting barriers to transport: a review of different techniques. Physica D 159, 58–70 (2001)CrossRefMATHGoogle Scholar
  6. 6.
    A. Bower, A simple kinematic mechanism for mixing fluid parcels across a meandering jet. J. Phys. Oceanogr. 21, 173–171 (1991)CrossRefGoogle Scholar
  7. 7.
    S. Brunton, C. Rowley, Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Chaos 20(017503), 017503-1–017503-12 (2010)Google Scholar
  8. 8.
    C. Coulliette, F. Lekien, J.D. Paduan, G. Haller, J.E. Marsden, Optimal pollution mitigation in monterey bay based on coastal radar data and nonlinear dynamics. Environ. Sci. Technol. 41(18), 6562–6572 (2007)CrossRefGoogle Scholar
  9. 9.
    F. d’Ovidio, V. Fernández, E. Hernández-García, C. López, Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett. 31(17), L17203-1–L17203-4 (2004). doi:10.1029/2004GL020328Google Scholar
  10. 10.
    R. Fuchs, B. Schindler, R. Peikert, Scale-space approaches to FTLE ridges, in Topological Methods in Data Analysis and Visualization II, ed. by R. Peikert, H. Hauser, H. Carr, R. Fuchs (Springer, New York, 2012), pp. 283–296CrossRefGoogle Scholar
  11. 11.
    I. Goldhirsch, P.L. Sulem, S.A. Orszag, Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method. Physica D 27(3), 311–337 (1987)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10(1), 99–108 (2000)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248–277 (2001)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    I. Hernández-Carracos, C. López, E. Hernández-García, A. Turiel, How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics? Ocean Model. 36(3–4), 208–218 (2011)CrossRefGoogle Scholar
  15. 15.
    B. Joseph, B. Legras, Relation between kinematic boundaries, stirring, and barriers for the antarctic polar vortex. J. Atmos. Sci. 59, 1198–1212 (2002)CrossRefGoogle Scholar
  16. 16.
    D. Karrasch, G. Haller, Do Finite-Size Lyapunov Exponents Detect Coherent Structures? (2013). http://arxiv.org/abs/1307.7888
  17. 17.
    J. Kasten, C. Petz, I. Hotz, B. Noack, H.C. Hege, Localized finite-time lyapunov exponent for unsteady flow analysis, in Vision Modeling and Visualization, vol. 1, ed. by M. Magnor, B. Rosenhahn, H. Theisel (Universität Magdeburg, Inst. f. Simulation u. Graph., 2009), pp. 265–274Google Scholar
  18. 18.
    T.Y. Koh, B. Legras, Hyperbolic lines and the stratospheric polar vortex. Chaos 12(2), 382–394 (2002)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    A.J. Mariano, A. Griffa, T.M. Özgökmen, E. Zambianchi, Lagrangian analysis and predictability of coastal and ocean dynamics 2000. J. Atmos. Ocean. Technol. 19(7), 1114–1126 (2002)CrossRefGoogle Scholar
  20. 20.
    A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matković, H. Hauser, The state of the art in topology-based visualization of unsteady flow. Comput. Graph. Forum 30(6), 1789–1811 (2011)CrossRefGoogle Scholar
  21. 21.
    F. Sadlo, R. Peikert, Efficient visualization of lagrangian coherent structures by filtered AMR ridge extraction. IEEE Trans. Vis. Comput. Graph. 13(5), 1456–1463 (2007)CrossRefGoogle Scholar
  22. 22.
    R. Samelson, Fluid exchange across a meandering jet. J. Phys. Oceanogr. 22, 431–440 (1992)CrossRefGoogle Scholar
  23. 23.
    B. Schindler, R. Peikert, R. Fuchs, H. Theisel, Ridge concepts for the visualization of lagrangian coherent structures, in Topological Methods in Data Analysis and Visualization II, ed. by R. Peikert, H. Hauser, H. Carr, R. Fuchs (Springer, New York, 2012), pp. 221–236CrossRefGoogle Scholar
  24. 24.
    S.C. Shadden, F. Lekien, J.E. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenom. 212(3–4), 271–304 (2005)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    M. Üffinger, F. Sadlo, M. Kirby, C.D. Hansen, T. Ertl, FTLE computation beyond first order approximation, in Eurographics Short Papers, ed. by C. Andujar, E. Puppo, Eurographics Association, Cagliari, pp. 61–64, 2012Google Scholar
  26. 26.
    S. Wiggins, The dynamical systems approach to lagrangian transport in oceanic flows. Annu. Rev. Fluid Mech. 37, 295–328 (2005)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ronald Peikert
    • 1
  • Armin Pobitzer
    • 2
  • Filip Sadlo
    • 3
  • Benjamin Schindler
    • 1
  1. 1.Department of Computer ScienceETH ZurichZurichSwitzerland
  2. 2.University of BergenBergenNorway
  3. 3.University of StuttgartStuttgartGermany

Personalised recommendations