Robust Detection of Singularities in Vector Fields

  • Harsh Bhatia
  • Attila Gyulassy
  • Hao Wang
  • Peer-Timo Bremer
  • Valerio Pascucci
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Recent advances in computational science enable the creation of massive datasets of ever increasing resolution and complexity. Dealing effectively with such data requires new analysis techniques that are provably robust and that generate reproducible results on any machine. In this context, combinatorial methods become particularly attractive, as they are not sensitive to numerical instabilities or the details of a particular implementation. We introduce a robust method for detecting singularities in vector fields. We establish, in combinatorial terms, necessary and sufficient conditions for the existence of a critical point in a cell of a simplicial mesh for a large class of interpolation functions. These conditions are entirely local and lead to a provably consistent and practical algorithm to identify cells containing singularities.

References

  1. 1.
    R. Batra, L. Hesselink, Feature comparisons of 3-D vector fields using earth mover’s distance, in Proceedings of IEEE Visualization, San Francisco, 1999, pp. 105–114Google Scholar
  2. 2.
    P.-T. Bremer, G. Weber, V. Pascucci, M. Day, J. Bell, Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans. Vis. Comput. Graph. 16(2), 248–260 (2010)CrossRefGoogle Scholar
  3. 3.
    G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, E. Zhang, Vector field editing and periodic orbit extraction using morse decomposition. IEEE Trans. Vis. Comput. Graph. 13(4), 769–785 (2007)CrossRefGoogle Scholar
  4. 4.
    G. Chen, K. Mischaikow, R.S. Laramee, E. Zhang, Efficient Morse decompositions of vector fields. IEEE Trans. Vis. Comput. Graph. 14(4), 848–862 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Edelsbrunner, E.P. Mücke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 66–104 (1990)CrossRefMATHGoogle Scholar
  6. 6.
    G. Elber, M.-S. Kim, Geometric constraint solver using multivariate rational spline functions, in Proceedings of ACM Symposium on Solid Modeling and Applications (SMA ’01), Ann Arbor, 2001, pp. 1–10Google Scholar
  7. 7.
    C. Garth, X. Tricoche, G. Scheuermann, Tracking of vector field singularities in unstructured 3D time-dependent datasets, in Proceedings of IEEE Visualization, Austin, 2004, pp. 329–336Google Scholar
  8. 8.
    J.L. Helman, L. Hesselink, Representation and display of vector field topology in fluid flow data sets. IEEE Comput. 22(8), 27–36 (1989)CrossRefGoogle Scholar
  9. 9.
    D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, V. Pascucci, Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Vis. Comput. Graph. 12(5), 1052–1060 (2006)CrossRefGoogle Scholar
  10. 10.
    Y. Lavin, R. Batra, L. Hesselink, Feature comparisons of vector fields using earth mover’s distance, in Proceedings of IEEE Visualization, Research Triangle Park, 1998, pp. 103–109Google Scholar
  11. 11.
    W.-C. Li, B. Vallet, N. Ray, B. Levy, Representing higher-order singularities in vector fields on piecewise linear surfaces. IEEE Trans. Vis. Comput. Graph. 12(5), 1315–1322 (2006)CrossRefGoogle Scholar
  12. 12.
    N.G. Lloyd, Degree theory, Cambridge University Press, 1978Google Scholar
  13. 13.
    M. Maltrud, F. Bryan, S. Peacock, Boundary impulse response functions in a century-long eddying global ocean simulation. Environ. Fluid Mech. 10, 275–295 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Mann, A. Rockwood, Computing singularities of 3D vector fields with geometric algebra, in Proceedings of IEEE Visualization, Boston, 2002, pp. 283–290Google Scholar
  15. 15.
    A. Mascarenhas, R.W. Grout, P.-T. Bremer, E.R. Hawkes, V. Pascucci, J.H. Chen, Topological feature extraction for comparison of terascale combustion simulation data, in Topological Methods in Data Analysis and Visualization, ed. by V. Pascucci, X. Tricoche, H. Hagen, J. Tierny. Mathematics and Visualization (Springer, Berlin/Heidelberg, 2011), pp. 229–240Google Scholar
  16. 16.
  17. 17.
    K. Polthier, E. Preuß, Identifying vector field singularities using a discrete Hodge decomposition, in Mathematical Visualization III, ed. by H. Hege, K. Polthier (Springer, Berlin/New York, 2003) pp. 112–134Google Scholar
  18. 18.
    J. Reininghaus, I. Hotz, Combinatorial 2D vector field topology extraction and simplification, in Topological Methods in Data Analysis and Visualization, ed. by V. Pascucci, X. Tricoche, H. Hagen, J. Tierny. Mathematics and Visualization (Springer, Berlin/Heidelberg, 2011), pp. 103–114Google Scholar
  19. 19.
    J. Reininghaus, C. Löwen, I. Hotz, Fast combinatorial vector field topology. IEEE Trans. Vis. Comput. Graph. 17, 1433–1443 (2011)CrossRefGoogle Scholar
  20. 20.
    G. Scheuermann, H. Krüger, M. Menzel, A.P. Rockwood, Visualizing nonlinear vector field topology. IEEE Trans. Vis. Comput. Graph. 4(2), 109–116 (1998)CrossRefGoogle Scholar
  21. 21.
    G. Scheuermann, X. Tricoche, Topological methods for flow visualization, in The Visualization Handbook, ed. by C.D. Hansen, C.R. Johnson (Elsevier, Oxford, 2005), pp. 341–356CrossRefGoogle Scholar
  22. 22.
    S. Schirra, Robustness and precision issues in geometric computation, in Handbook of Computational Geometry, chapter 14, ed. by J.-R. Sack, J. Urrutia, (Elsevier, Amsterdam/New York, 2000)Google Scholar
  23. 23.
    H. Theisel, C. Rössl, H.-P. Seidel, Compression of 2D vector fields under guaranteed topology preservation. Comput. Graph. Forum (Proc. Eurographics), 22(3), 333–342 (2003)Google Scholar
  24. 24.
    H. Theisel, T. Weinkauf, H.-C. Hege, H.-P. Seidel, Saddle connectors – an approach to visualizing the topological skeleton of complex 3D vector fields, in Proceedings of IEEE Visualization, Seattle, 2003Google Scholar
  25. 25.
    X. Tricoche, C. Garth, A. Sanderson, Visualization of topological structures in area preserving maps. IEEE Trans. Vis. Comput. Graph. 17(12), 1765–1774 (2011)Google Scholar
  26. 26.
    X. Tricoche, C. Garth, A. Sanderson, K. Joy, Visualizing invariant manifolds in area-preserving maps, in Topological Methods in Data Analysis and Visualization II, ed. by R. Peikert, H. Hauser, H. Carr, R. Fuchs. Mathematics and Visualization (Springer/Berlin Heidelberg, 2012), pp. 109–124Google Scholar
  27. 27.
    X. Tricoche, G. Scheuermann, H. Hagen, Higher order singularities in piecewise linear vector fields, in The Mathematics of Surfaces IX, ed. by R. Cipolla, R. Martin (Springer, London), pp. 99–113Google Scholar
  28. 28.
    X. Tricoche, G. Scheuermann, H. Hagen, A topology simplification method for 2D vector fields, in Proceedings of IEEE Visualization, Salt Lake City, 2000, pp. 359–366Google Scholar
  29. 29.
    X. Tricoche, G. Scheuermann, H. Hagen, Continuous topology simplification of planar vector fields, in Proceedings of IEEE Visualization, San Diego, 2001, pp. 159–166Google Scholar
  30. 30.
    T. Weinkauf, H. Theisel, H.-C. Hege, H.-P. Seidel, Toplogical construction and visualization of higher order 3D vector fields. Comput. Graph. Forum (Proc. Eurographics), 23(3), 469–478 (2004)Google Scholar
  31. 31.
    T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, H.-P. Seidel, Extracting higher order critical points and topological simplification of 3D vector fields, in Proceedings of IEEE Visualization, Minneapolis, 2005Google Scholar
  32. 32.
    C.K. Yap, Robust geometric computation, in Handbook of Discrete and Computational Geometry, chapter 41, ed. by J.E. Goodman, J. O’Rourke (Chapmen & Hall, Boca Raton, 2004), pp. 927–952Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Harsh Bhatia
    • 1
    • 2
  • Attila Gyulassy
    • 3
  • Hao Wang
    • 3
  • Peer-Timo Bremer
    • 1
    • 2
  • Valerio Pascucci
    • 3
  1. 1.SCI InstituteUniversity of UtahSalt Lake CityUSA
  2. 2.Center for Applied Scientific ComputingLawrence Livermore National LaboratoryLivermoreUSA
  3. 3.SCI InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations