Soil Carbon pp 45-57

Part of the Progress in Soil Science book series (PROSOIL)

Quantitatively Predicting Soil Carbon Across Landscapes

  • Budiman Minasny
  • Alex B. McBratney
  • Brendan P. Malone
  • Marine Lacoste
  • Christian Walter
Chapter

Abstract

Quantitative prediction of soil carbon (C) in the landscape can be achieved by empirical or mechanistic models, or a combination of both. The empirical approach called digital soil mapping, usually involves: collection of a database of soil carbon observations over an area of interest; compilation of relevant covariates for the area; calibration or training of a spatial prediction function based on the observed dataset; interpolation and/or- extrapolation of the prediction function over the whole area; and finally validation using existing or independent datasets. The resulting digital maps of C can be used in landscape mechanistic models simulating soil organic C evolution laterally and vertically (within the profile). Here we demonstrate the two approaches in predicting C stock evolution in a landscape in Northwest of France. We introduce the pedogeomorphometry approach which can combine the two approaches to map soil carbon dynamics at the landscape scale.

Keywords

Soil maps Clorpt model Spatial prediction Dynamic soil carbon model 

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Al-Abbas AH, Swain PH, Baumgardner MF (1972) Relating organic matter and clay content to the multispectral radiance of soils. Soil Sci 114:477–485CrossRefGoogle Scholar
  3. Arrouays D, Pelissier P (1994) Modeling carbon storage profiles in temperate forest humic loamy soils of France. Soil Sci 157:185–192CrossRefGoogle Scholar
  4. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163CrossRefGoogle Scholar
  5. Batjes NH (2008) ISRIC-WISE – Global Soil Profile Data (ver. 3.1), WageningenGoogle Scholar
  6. Bengio Y, Courville A, Vincent P (2012) Representation learning: a review and new perspectives, arXiv:1206.5538v2Google Scholar
  7. Breiman L, Cutler A (2004) Random forests. Software manual. http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
  8. Bui E, Henderson B, Viergever K (2009) Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia. Glob Biogeochem Cycles 23(4):GB4033. doi:10.1029/2009GB003506 CrossRefGoogle Scholar
  9. Ciampalini R, Follain S, Le Bissonnais Y (2012) LandSoil: a model for analysing the impact of erosion on agricultural landscape evolution. Geomorphology 175:25–37CrossRefGoogle Scholar
  10. Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, HobokenGoogle Scholar
  11. Frazier BE, Cheng Y (1989) Remote sensing of soils in the eastern Palouse region with Landsat thematic mapper. Remote Sens Environ 28:317–325CrossRefGoogle Scholar
  12. Gessler PE, Moore ID, McKenzie NJ, Ryan PJ (1995) Soil-landscape modelling and spatial prediction of soil attributes. Int J Geogr Inf Syst 9:421–432CrossRefGoogle Scholar
  13. Gray J, Bishop T, Smith P, Robinson N, Brough D (2012) A pragmatic quantitative model for soil organic carbon distribution in eastern Australia. In: Minasny B, Malone B, McBratney A (eds) Digital soil assessment and beyond. CRC Press, pp 115–120Google Scholar
  14. Grimm R, Behrens T, Märker M, Elsenbeer H (2008) Soil organic carbon concentrations and stocks on Barro Colorado Island – digital soil mapping using Random Forests analysis. Geoderma 146:102–113CrossRefGoogle Scholar
  15. Henderson BL, Bui EN, Moran CJ, Simon DAP (2005) Australia-wide predictions of soil properties using decision trees. Geoderma 124:383–398CrossRefGoogle Scholar
  16. Jenkinson DS, Coleman K (2008) The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur J Soil Sci 59:400–413CrossRefGoogle Scholar
  17. Jenny H (1941) Factors of soil formation. McGraw-Hill, New YorkCrossRefGoogle Scholar
  18. Jenny H, Salem AE, Wallis JR (1968) Interplay of soil organic matter and soil fertility with state factors and soil properties. “Study Week on Organic Matter and Soil Fertility”. Pontif Acad Sci Scripta varia 32:5–36Google Scholar
  19. Kim J, Grunwald S, Rivero RG, Robbins R (2012) Multi-scale modeling of soil series using remote sensing in a wetland ecosystem. Soil Sci Soc Am J 76:2327–2341CrossRefGoogle Scholar
  20. Kristof SJ, Baumgardner MF, Johannsen CJ (1973) Spectral mapping of soil organic matter. LARS tech report number 030773, Laboratory for Applications of Remote Sensing, Purdue UniversityGoogle Scholar
  21. Lacoste M (2012) Evolution des sols à l’échelle du paysage sous des conditions de changements climatique et de structure du paysage. PhD thesis, Agrocampus Ouest, Rennes, FranceGoogle Scholar
  22. Lacoste M, Michot D, Viaud V, Walter C, Minasny B, McBratney AB (2012) High resolution 3D mapping for soil organic carbon assessment in a rural landscape. In: Minasny B, Malone B, McBratney A (eds) Digital soil assessment and beyond. CRC PressGoogle Scholar
  23. Leenhardt D, Voltz M, Bornand M, Webster R (1994) Evaluating soil maps for prediction of soil water properties. Eur J Soil Sci 45:293–301CrossRefGoogle Scholar
  24. McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52CrossRefGoogle Scholar
  25. McKenzie NJ, Ryan PJ (1999) Spatial prediction of soil properties using environmental correlation. Geoderma 89:67–94CrossRefGoogle Scholar
  26. Minasny B, McBratney AB (2013) Jenny, PCA and Random Forests. Pedometron 33:10–13.Google Scholar
  27. Minasny B, McBratney AB, Malone BP, Wheeler I (2013) Digital mapping of soil carbon. Adv Agron 118:1–47CrossRefGoogle Scholar
  28. Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452CrossRefGoogle Scholar
  29. Rawlins BG, Marchant BP, Smyth D, Scheib C, Lark RM, Jordan C (2009) Airborne radiometric survey data and a DTM as covariates for regional scale mapping of soil organic carbon across Northern Ireland. Eur J Soil Sci 60:44–54CrossRefGoogle Scholar
  30. Van Meirvenne M, Pannier J, Hofman G, Louwagie G (1996) Regional characterization of the long-term change in soil organic carbon under intensive agriculture. Soil Use Manag 12:86–94CrossRefGoogle Scholar
  31. Viaud V, Angers DA, Walter C (2010) Towards landscape-scale modeling of soil organic matter dynamics in agroecosystems. Soil Sci Soc Am J 74:1–14CrossRefGoogle Scholar
  32. Viaud V, Angers D, Walter C (2011) Challenges towards landscape-scale modeling of SOC dynamics in agroecosystems. In: International symposium on soil organic matter 2011. Organic matter dynamics – from soils to oceans. Leuven, Belgium, 11–14 July 2011Google Scholar
  33. Wiesmeier M, Barthold F, Blank B, Kögel-Knabner I (2011) Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil 340:7–24CrossRefGoogle Scholar
  34. Willgoose G (2005) Mathematical modeling of whole landscape evolution. Annu Rev Earth Planet Sci 33:443–459CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Budiman Minasny
    • 1
  • Alex B. McBratney
    • 2
  • Brendan P. Malone
    • 3
  • Marine Lacoste
    • 4
  • Christian Walter
    • 5
    • 6
  1. 1.Soil Security Laboratory, Faculty of Agriculture and EnvironmentThe University of SydneySydneyAustralia
  2. 2.Faculty of Agriculture, Food & Natural ResourcesThe University of SydneySydneyAustralia
  3. 3.Soil Security Laboratory, Department of Environmental Sciences, Faculty of Agriculture and EnvironmentThe University of SydneySydneyAustralia
  4. 4.Soil Science Research Unit, Centre de recherche d’OrléansOrléans Cedex 2France
  5. 5.INRA, AGROCAMPUS OUEST, UMR 1069, Soil, Agro- and Hydrosystems SpatializationRennesFrance
  6. 6.AGROCAMPUS OUEST, UMR 1069RennesFrance

Personalised recommendations