Bioproducts, Biofuels, and Perfumes: Conifer Terpene Synthases and their Potential for Metabolic Engineering

Chapter
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 44)

Abstract

Conifer trees, including the economically and ecologically important pine (Pinus), spruce (Picea), and fir (Abies) species, produce large amounts of oleoresin terpenoids as a defense against herbivores and pathogens. Due to the structural diversity of oleoresin terpenoids and their various chemical and physical properties, which range from solid and viscous resins to liquids and volatiles, many of these compounds are useful to humans for the production of therapeutics, fragrances and flavors, biofuels, and fine chemicals. In this chapter, we feature three examples of conifer terpenoids, the diterpene resin acids (DRA), the sesquiterpene E-α-bisabolene, and the diterpenol cis-abienol, to highlight the versatile utility of conifer terpenoids as renewable bioproducts. We focus on recent research progress on conifer terpene synthases (TPS) which produce a wealth of terpene scaffolds in nature. Our recent advances in conifer transcriptome and genome sequencing as well as metabolite analyses have accelerated discovery and definitive functional annotation of terpenoid pathway genes. New insights into the evolutionary diversification of conifer TPS, their modular organization, and dynamic expression will be fundamental to advance metabolic engineering and synthetic biology platforms for high-value terpenoids.

Keywords

Conifer defense Plant specialized metabolism Terpene synthase Metabolic engineering Bioproducts Biofuel 

References

  1. 1.
    Christianson DW (2008) Unearthing the roots of the terpenome. Curr Opin Chem Biol 2:141CrossRefGoogle Scholar
  2. 2.
    Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212PubMedCrossRefGoogle Scholar
  3. 3.
    Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408PubMedCrossRefGoogle Scholar
  4. 4.
    Agrawal AA, Hastings AP, Johnson MT, Maron JL, Salminen JP (2012) Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338:113PubMedCrossRefGoogle Scholar
  5. 5.
    Phillips MA, Croteau RB (1999) Resin-based defenses in conifers. Trends Plant Sci 4:184PubMedCrossRefGoogle Scholar
  6. 6.
    Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Ann Rev Plant Physiol Plant Mol Biol 52:689CrossRefGoogle Scholar
  7. 7.
    Keeling CI, Bohlmann J (2006) Diterpene resin acids in conifers. Phytochemistry 67:2415PubMedCrossRefGoogle Scholar
  8. 8.
    Boone CK, Aukema BH, Bohlmann J, Carroll AL, Raffa KF (2011) Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Can J For Res-Rev Can Rech For 41:1174CrossRefGoogle Scholar
  9. 9.
    Bohlmann J (2012) Pine terpenoid defences in the mountain pine beetle epidemic and in other conifer pest interactions: specialized enemies are eating holes into a diverse, dynamic and durable defence system. Tree Physiol 32:943PubMedCrossRefGoogle Scholar
  10. 10.
    Kolosova N, Bohlmann J (2012) Conifer Defense Against Insects and Fungal Pathogens. In Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch H (eds) Growth and Defence in Plants. Springer Berlin Heidelberg, p 85Google Scholar
  11. 11.
    Bohlmann J, Croteau R (1999) Diversity and variability of terpenoid defences in conifers: molecular genetics, biochemistry and evolution of the terpene synthase gene family in grand fir (Abies grandis). Novartis Found Symp 223:132PubMedGoogle Scholar
  12. 12.
    Barnett JR, Langenheim JH (2004) Plant resins: chemistry, evolution, ecology and ethnobotany. Ann Bot 93:784PubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zulak KG, Dullat HK, Keeling CI, Lippert D, Bohlmann J (2010) Immunofluorescence localization of levopimaradiene/abietadiene synthase in methyl jasmonate treated stems of Sitka spruce (Picea sitchensis) shows activation of diterpenoid biosynthesis in cortical and developing traumatic resin ducts. Phytochemistry 71:1695PubMedCrossRefGoogle Scholar
  14. 14.
    Zulak KG, Lippert DN, Kuzyk MA, Domanski D, Chou T, Borchers CH, Bohlmann J (2009) Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multi-level study of methyl jasmonate-treated Norway spruce (Picea abies). Plant J 60:1015PubMedCrossRefGoogle Scholar
  15. 15.
    Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol 137:369PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol 52:86PubMedCrossRefGoogle Scholar
  18. 18.
    Abbott E, Hall D, Hamberger B, Bohlmann J (2010) Laser microdissection of conifer stem tissues: isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of White spruce (Picea glauca). BMC Plant Biol 10:106PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987PubMedCrossRefGoogle Scholar
  20. 20.
    Safranyik L, Carroll A, Régnière J, Langor DW, Riel WG, Shore TL, Peter B, Cooke BJ, Nealis VG, Taylor SW (2010) Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can Entomol 142:415CrossRefGoogle Scholar
  21. 21.
    DiGuistini S, Wang Y, Liao NY, Taylor G, Tanguay P, Feau N, Henrissat B, Chan SK, Hesse-Orce U, Alamouti SM, Tsui CK, Docking RT, Levasseur A, Haridas S, Robertson G, Birol I, Holt RA, Marra MA, Hamelin RC, Hirst M, Jones SJ, Bohlmann J, Breuil C (2011) Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc Natl Acad Sci USA 108:2504PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hesse-Orce U, DiGuistini S, Keeling CI, Wang Y, Li M, Henderson H, Docking TR, Liao NY, Robertson G, Holt RA, Jones SJ, Bohlmann J, Breuil C (2010) Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera. BMC Genomics 11:536PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Keeling CI, Henderson H, Li M, Yuen M, Clark EL, Fraser JD, Huber DP, Liao NY, Docking TR, Birol I, Chan SK, Taylor GA, Palmquist D, Jones SJ, Bohlmann J (2012) Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. Insect Biochem Mol Biol 42:525PubMedCrossRefGoogle Scholar
  24. 24.
    Wang Y, Lim L, DiGuistini S, Robertson G, Bohlmann J, Breuil C (2013) A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees. New Phytol 197:886PubMedCrossRefGoogle Scholar
  25. 25.
    Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MM, Li M, Hillbur Y, Bohlmann J, Hansson BS, Schlyter F (2013) Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14:198PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Erbilgin N, Colgan LJ (2012) Differential effects of plant ontogeny and damage type on phloem and foliage monoterpenes in jack pine (Pinus banksiana). Tree Physiol 32:946PubMedCrossRefGoogle Scholar
  27. 27.
    Swift KAD (2004) Catalytic transformations of the major terpene feedstocks. Top Catal 27:143CrossRefGoogle Scholar
  28. 28.
    Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320PubMedCrossRefGoogle Scholar
  29. 29.
    Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54:656PubMedCrossRefGoogle Scholar
  30. 30.
    Wilbon PA, Chu F, Tang C (2012) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Comm 34:8CrossRefGoogle Scholar
  31. 31.
    Hillwig ML, Mann FM, Peters RJ (2011) Diterpenoid biopolymers: new directions for renewable materials engineering. Biopolymers 95:71PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Wang J, Chen YP, Yao K, Wilbon PA, Zhang W, Ren L, Zhou J, Nagarkatti M, Wang C, Chu F, He X, Decho AW, Tang C (2011) Robust antimicrobial compounds and polymers derived from natural resin acids. Chem Commun 48:916CrossRefGoogle Scholar
  33. 33.
    Zerbe P, Chiang A, Yuen M, Hamberger B, Hamberger B, Draper JA, Britton R, Bohlmann J (2012) Bifunctional cis-abienol synthase from Abies balsamea discovered by transcriptome sequencing and its implications for diterpenoid fragrance production. J Biol Chem 287:12121PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325PubMedCrossRefGoogle Scholar
  35. 35.
    Mayor S (2011) Tree that provides paclitaxel is put on list of endangered species. Br Med J 343:7411CrossRefGoogle Scholar
  36. 36.
    Jennewein S, Croteau R (2001) Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl Microbiol Biotechnol 57:13PubMedCrossRefGoogle Scholar
  37. 37.
    Guerra-Bubb J, Croteau R, Williams RM (2012) The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Natl Prod Rep 29:683CrossRefGoogle Scholar
  38. 38.
    Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Jiang M, Stephanopoulos G, Pfeifer BA (2012) Downstream reactions and engineering in the microbially reconstituted pathway for Taxol. Appl Microbiol Biotechnol 94:841PubMedCrossRefGoogle Scholar
  40. 40.
    Chiu P, Leung LT, Ko BC (2010) Pseudolaric acids: isolation, bioactivity and synthetic studies. Nat Prod Rep 27:1066PubMedCrossRefGoogle Scholar
  41. 41.
    Son KH, Oh HM, Choi SK, Han DC, Kwon BM (2005) Anti-tumor abietane diterpenes from the cones of Sequoia sempervirens. Bioorg Med Chem Lett 15:2019PubMedCrossRefGoogle Scholar
  42. 42.
    Tu WC, Wang SY, Chien SC, Lin FM, Chen LR, Chiu CY, Hsiao PW (2007) Diterpenes from Cryptomeria japonica inhibit androgen receptor transcriptional activity in prostate cancer cells. Planta Med 73:1407PubMedCrossRefGoogle Scholar
  43. 43.
    Busch T, Kirschning A (2008) Recent advances in the total synthesis of pharmaceutically relevant diterpenes. Nat Prod Rep 25:318PubMedCrossRefGoogle Scholar
  44. 44.
    Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940PubMedCrossRefGoogle Scholar
  46. 46.
    Hamberger B, Ohnishi T, Hamberger B, Séguin A, Bohlmann J (2011) Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol 157:1677PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Hall D, Zerbe P, Jancsik S, Quesada AL, Dullat H, Madilao LL, Yuen M, Bohlmann J (2013) Evolution of conifer diterpene synthases: diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases. Plant Physiol 161:600PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Coates RM (1976) Biogenetic-type rearrangements of terpenes. Fortschr Chem Org Naturst 33:73PubMedGoogle Scholar
  50. 50.
    Okada K (2011) The Biosynthesis of isoprenoids and the mechanisms regulating it in plants. Biosci Biotech Biochem 75:1219CrossRefGoogle Scholar
  51. 51.
    Miller B, Oschinski C, Zimmer W (2001) First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta 213:483PubMedCrossRefGoogle Scholar
  52. 52.
    Beale MH (1990) The biosynthesis of C5-C20 terpenoid compounds. Nat Prod Rep 7:25PubMedCrossRefGoogle Scholar
  53. 53.
    Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106:3412PubMedCrossRefGoogle Scholar
  54. 54.
    Gao Y, Honzatko RB, Peters RJ (2012) Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep 29:1153PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Peters RJ (2010) Two rings in them all: the labdane-related diterpenoids. Nat Prod Rep 27:1521PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Keeling CI, Dullat HK, Yuen M, Ralph SG, Jancsik S, Bohlmann J (2010) Identification and functional characterization of monofunctional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evolution for primary and secondary metabolism in gymnosperms. Plant Physiol 152:1197PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Hayashi K-I, Kawaide H, Notomi M, Sakigi Y, Matsuo A, Nozaki H (2006) Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett 580:6175PubMedCrossRefGoogle Scholar
  58. 58.
    Mafu S, Hillwig ML, Peters RJ (2011) A novel labda-7,13-dien-15-ol-producing bifunctional diterpene synthase from Selaginella moellendorffii. Chembiochem 12:1984PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657PubMedCrossRefGoogle Scholar
  60. 60.
    Ro D-K, Arimura G, Lau SY, Piers E, Bohlmann J (2005) Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc Natl Acad Sci USA 102:8060PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Jennewein S, Rithner CD, Williams RM, Croteau R (2003) Taxoid metabolism: taxoid 14ï¢-hydroxylase is a cytochrome P450-dependent monooxygenase. Arch Biochem Biophys 413:262PubMedCrossRefGoogle Scholar
  62. 62.
    Chau M et al (2004) Taxol biosynthesis: molecular cloning and characterization of a cytochrome P450 taxoid 7ï¢-hydroxylase. Chem Biol 11:663PubMedGoogle Scholar
  63. 63.
    Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66:194PubMedCrossRefGoogle Scholar
  64. 64.
    Li G, Köllner TG, Yin Y, Jiang Y, Chen H, Xu Y, Gershenzon J, Pichersky E, Chen F (2012) Nonseed plant Selaginella moellendorfii has both seed plant and microbial types of terpene synthases. Proc Natl Acad Sci USA 109:14711PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MMS, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, MacKay J, Bohlmann J, and SJM Jones (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492Google Scholar
  66. 66.
    Keeling CI, Weisshaar S, Ralph SG, Jancsik S, Hamberger B, Dullat HK, Bohlmann J (2011) Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp. ). BMC Plant Biol 11:43PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Aubourg S, Lecharny A, Bohlmann J (2002) Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 267:730PubMedCrossRefGoogle Scholar
  68. 68.
    Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O, Lund ST, Bohlmann J (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10:226PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Köksal M, Jin Y, Coates RM, Croteau R, Christianson DW (2011) Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature 469:116PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Köksal M, Hu H, Coates RM, Peters RJ, Christianson DW (2011) Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase. Nat Chem Biol 7:431PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Zhou K, Gao Y, Hoy JA, Mann FM, Honzatko RB, Peters RJ (2012) Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis. J Biol Chem 287:6840PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Cao R, Zhang Y, Mann FM, Huang C, Mukkamala D, Hudock MP, Mead ME, Prisic S, Wang K, Lin FY, Chang TK, Peters RJ, Oldfield E (2010) Diterpene cyclases and the nature of the isoprene fold. Proteins 78:2417PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    McAndrew RP, Peralta-Yahya PP, DeGiovanni A, Pereira JH, Hadi MZ, Keasling JD, Adams PD (2011) Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production. Structure 19:1876PubMedCrossRefGoogle Scholar
  74. 74.
    Peters RJ, Flory JE, Jetter R, Ravn MM, Lee HJ, Coates RM, Croteau RB (2000) Abietadiene synthase from grand fir (Abies grandis): characterization and mechanism of action of the “pseudomature” recombinant enzyme. BioChemistry 39:15592PubMedCrossRefGoogle Scholar
  75. 75.
    Martin DM, Fäldt J, Bohlmann J (2004) Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135:1908PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Keeling CI, Weisshaar S, Lin RP, Bohlmann J (2008) Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proc Natl Acad Sci USA 105:1085PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Keeling CI, Madilao LL, Zerbe P, Dullat HK, Bohlmann J (2011) The primary diterpene synthase products of Picea abies levopimaradiene/abietadiene synthase (PaLAS) are epimers of a thermally unstable diterpenol. J Biol Chem 286:21145PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Gray PS, Mills JS (1964) The isolation of abienol from Canada Balsam, the oleoresin of Abies balsamea (L.) Mill. J Chem Soc 1:5822CrossRefGoogle Scholar
  79. 79.
    Miyazawa M, Tamura N (2008) Characteristic odor components in the essential oil from yacón tubers (Polymnia sonchifolia Poepp. et Endl.). J Essent Oil Res 20:12CrossRefGoogle Scholar
  80. 80.
    Duquesnoy E, Marongiu B, Castola V, Piras A, Porcedda S, Casanova J (2010) Combined analysis by GC (RI), GC-MS and 13C NMR of the supercritical fluid extract of Abies alba twigs. Nat Prod Commun 5:1995PubMedGoogle Scholar
  81. 81.
    Sallaud C, Giacalone C, Töpfer R, Goepfert S, Bakaher N, Rösti S, Tissier A (2012) Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J 72:1PubMedCrossRefGoogle Scholar
  82. 82.
    Coppen JJW, Hone GA (1995) Gum naval stores: turpentine and rosin from pine resin. In Coppen JJW, Hone GA (eds) Non-wood Forest Products 2. FAO, Rome, p. 62Google Scholar
  83. 83.
    Barrero AF, Alvarez-Manzaneda EJ, Altarejos J, Salido S, Ramos JM (1993) Synthesis of Ambrox® from ()-sclareol and ( + )-cis-abienol. Tetrahedron 49:10405CrossRefGoogle Scholar
  84. 84.
    Caniard A, Zerbe P, Legrand S, Cohade A, Valot N, Magnard JL, Bohlmann J, Legendre L (2012) Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture. BMC Plant Biol 12:119PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Schmiderer C, Grassi P, Novak J, Weber M, Franz C (2008) Diversity of essential oil glands of clary sage (Salvia sclarea L., Lamiaceae). Plant Biol 10:433PubMedCrossRefGoogle Scholar
  86. 86.
    Schalk M, Pastore L, Mirata MA, Khim S, Schouwey M, Deguerry F, Pineda V, Rocci L, Daviet L (2012) Towards a biosynthetic route to sclareol and amber odorants. J Am Chem Soc 134:18900PubMedCrossRefGoogle Scholar
  87. 87.
    Falara V, Pichersky E, Kanellis AK (2010) A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes. Plant Physiol 154:301PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Criswell J, Potter K, Shephard F, Beale MH, Peters RJ (2012) A single residue change leads to a hydroxylated product from the class II diterpene cyclization catalyzed by abietadiene synthase. Org Lett 14:5828PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Seo S, Gomi K, Kaku H, Abe H, Seto H, Nakatsu S, Neya M, Kobayashi M, Nakaho K, Ichinose Y, Mitsuhara I, Ohashi Y (2012) Identification of natural diterpenes that inhibit bacterial wilt disease in tobacco, tomato and Arabidopsis. Plant Cell Physiol 53:1432PubMedCrossRefGoogle Scholar
  90. 90.
    Renninger N, McPhee D (2008) Jet fuel additive farnesane derivatives and method of making using same. US Patent 7399323Google Scholar
  91. 91.
    Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Tracy NI, Chen D, Crunkleton DW, Price GL (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88:2238CrossRefGoogle Scholar
  93. 93.
    Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuels 24:267CrossRefGoogle Scholar
  94. 94.
    Bohlmann J, Crock J, Jetter R, Croteau R (1998) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci USA 95:6756PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Bowers WS, Fales HM, Thompson MJ, Uebel EC (1966) Juvenile hormone: identification of an active compound from balsam fir. Science 154:1020PubMedCrossRefGoogle Scholar
  96. 96.
    Huber DPW, Philippe RN, Godard KA, Sturrock RN, Bohlmann J (2005) Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii. Phytochemistry 66:1427PubMedCrossRefGoogle Scholar
  97. 97.
    Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796PubMedCrossRefGoogle Scholar
  98. 98.
    Özaydın B, Burd H, Lee TS, Keasling JD (2012) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng (in press)Google Scholar
  99. 99.
    Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci USA 108:19949PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Oldfield E, Lin F-Y (2012) Terpene biosynthesis: modularity rules. Angew Chem Int Ed Engl 51:1124PubMedCrossRefGoogle Scholar
  101. 101.
    Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro DK, Sensen CW, Storms R, Martin VJ (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 30:127PubMedCrossRefGoogle Scholar
  102. 102.
    Schilmiller AL, Pichersky E, Last RL (2012) Taming the hydra of specialized metabolism: how systems biology and comparative approaches are revolutionizing plant biochemistry. Curr Opin Plant Biol 15:338PubMedCrossRefGoogle Scholar
  103. 103.
    Wilderman PR, Peters RJ (2007) A single residue switch converts abietadiene synthase into a pimaradiene specific cyclase. J Am Chem Soc 129:15736PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Zerbe P, Chiang A, Bohlmann J (2012) Mutational analysis of white spruce (Picea glauca) ent-kaurene synthase (PgKS) reveals common and distinct mechanisms of conifer diterpene synthases of general and specialized metabolism. Phytochemistry 74:30PubMedCrossRefGoogle Scholar
  105. 105.
    Xu M, Wilderman PR, Peters RJ (2007) Following evolution’s lead to a single residue switch for diterpene synthase product outcome. Proc Natl Acad Sci USA 104:7397PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Morrone D, Xu M, Fulton DB, Determan MK, Peters RJ (2008) Increasing complexity of a diterpene synthase reaction with a single residue switch. J Am Chem Soc 130:5400PubMedCrossRefGoogle Scholar
  107. 107.
    Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440:1078PubMedCrossRefGoogle Scholar
  108. 108.
    O’Maille PE, Malone A, Dellas N, Andes Hess B Jr, Smentek L, Sheehan I, Greenhagen BT, Chappell J, Manning G, Noel JP (2008) Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat Chem Biol 4:617PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Leonard E, Ajikumar PK, Thayer K, Xiao WH, Mo JD, Tidor B, Stephanopoulos G, Prather KL (2010) Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci USA 107:13654PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Aaron JA, Lin X, Cane DE, Christianson DW (2010) Structure of epi-isozizaene synthase from Streptomyces coelicolor A3(2), a platform for new terpenoid cyclization templates. BioChemistry 49:1787PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11:13PubMedCrossRefGoogle Scholar
  112. 112.
    Yoshikuni Y, Dietrich JA, Nowroozi FF, Babbitt PC, Keasling JD (2008) Redesigning enzymes based on adaptive evolution for optimal function in synthetic metabolic pathways. Chem Biol 15:607PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK (2012) Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 134:3234PubMedCrossRefGoogle Scholar
  114. 114.
    Liu Q, Chen Y-Q (2010) A new mechanism in plant engineering: the potential roles of microRNAs in molecular breeding for crop improvement. Biotechnol Adv 28:301PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada

Personalised recommendations