Abstract

Embedded System Design is becoming a field of choice for Model-Driven Engineering techniques. On the engineering side, models bring an abstraction of the code that can then be generated (and regenerated) at will. On the semantic side, they bring a reasoning framework to guarantee or verify properties on the generated code. We focus here on the Clock Constraint Specification Language, initially defined as a companion language of the uml Profile for marte. More specifically, we propose a state-based data-structure inspired by lazy evaluation technique to represent the unbounded ccsl operators. Lazy evaluation allows for an intentional representation of infinite transition systems. We provide an algorithm to compute the synchronized product of such transition systems. Even though the transition systems are infinite, the result of the composition may become finite, in which case the (semi)algorithm terminates and exhaustive analysis becomes possible. We also study the time complexity and show that it is exponential in the number of clocks. We then explore several solutions where this worst-case estimation is not attained and where analyses have a much better complexity in practice.

Keywords

Multiform logical time synchronized product lazy evaluation marte ccsl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    OMG: UML Profile for MARTE, v1.0. Object Management Group, formal/2009-11-02 (November 2009)Google Scholar
  2. 2.
    André, C.: Syntax and Semantics of the Clock Constraint Specification Language (CCSL). Research Report RR-6925, INRIA (2009)Google Scholar
  3. 3.
    Mallet, F.: CCSL: specifying clock constraints with UML/MARTE. Innovations in Systems and Software Engineering 4(3), 309–314 (2008)CrossRefGoogle Scholar
  4. 4.
    Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone, R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1), 64–83 (2003)CrossRefGoogle Scholar
  5. 5.
    Deantoni, J., Mallet, F.: Timesquare: Treat your models with logical time. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Gascon, R., Mallet, F., DeAntoni, J.: Logical time and temporal logics: Comparing UML MARTE/CCSL and PSL. In: TIME, pp. 141–148 (2011)Google Scholar
  7. 7.
    Yin, L., Mallet, F., Liu, J.: Verification of MARTE/CCSL time requirements in Promela/SPIN. In: ICECCS, pp. 65–74 (2011)Google Scholar
  8. 8.
    Mallet, F.: Automatic generation of observers from MARTE/CCSL. In: IEEE Int. Symp. on Rapid System Prototyping, pp. 86–92. IEEE (October 2012)Google Scholar
  9. 9.
    Johnsson, T.: Efficient compilation of lazy evaluation. In: SIGPLAN Symposium on Compiler Construction, pp. 58–69. ACM (1984)Google Scholar
  10. 10.
    Arnold, A.: Synchronized products of transition systems and their analysis. In: ICATPN, pp. 26–27 (1998)Google Scholar
  11. 11.
    Romenska, Y., Mallet, F.: Lazy parallel synchronous composition of infinite transition systems. In: ICTERI. CEUR Workshop Proceedings, vol. 1000, pp. 130–145. CEUR-WS.org (2013)Google Scholar
  12. 12.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Sorea, M.: Lazy approximation for dense real-time systems. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 363–378. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 990–1005. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow programs for digital signal processing. IEEE Trans. Computers 36(1), 24–35 (1987)CrossRefMATHGoogle Scholar
  17. 17.
    Lee, E.A., Parks, T.M.: Dataflow process networks. In: De Micheli, G., Ernst, R., Wolf, W. (eds.) Readings in hardware/software co-design, pp. 59–85. Kluwer Academic Publishers, Norwell (2002)CrossRefGoogle Scholar
  18. 18.
    Mallet, F., Millo, J.-V.: Boundness issues in CCSL specifications. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 20–35. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Arnold, A.: Finite transition systems - semantics of communicating systems. Prentice Hall international series in computer science. Prentice Hall (1994)Google Scholar
  20. 20.
    Arnold, A.: Nivat’s processes and their synchronization. Theor. Comput. Sci. 281(1-2), 31–36 (2002)CrossRefMATHGoogle Scholar
  21. 21.
    DeAntoni, J., André, C., Gascon, R.: CCSL denotational semantics. Research Report RR-8000, INRIA (2010)Google Scholar

Copyright information

© Springer International Publishing 2013

Authors and Affiliations

  • Yuliia Romenska
    • 1
    • 2
  • Frédéric Mallet
    • 1
  1. 1.CNRS, I3S, UMR 7271, INRIAUniv. Nice Sophia-AntipolisSophia AntipolisFrance
  2. 2.V.N.Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations