Age-Related Variation in the Biomechanical and Structural Properties of the Corneo-Scleral Tunic

  • Brendan Geraghty
  • Charles Whitford
  • Craig Boote
  • Riaz Akhtar
  • Ahmed ElsheikhEmail author
Part of the Engineering Materials and Processes book series (EMP)


With increasing age, the mechanical performance of the cornea and sclera is impaired due to structural changes in the major structural proteins, namely collagens , proteoglycans and elastin. In addition, the level of hydration in the ocular tunic decreases over time. These structural changes profoundly impact on the biomechanical properties of the corneo-scleral tunic. This chapter focuses on the structural and biomechanical changes that occur in the corneo-scleral tunic with age. The techniques that are utilized in order to determine the mechanical properties of both the cornea and sclera are discussed, and a comprehensive review of studies which have characterized age-related changes in ocular biomechanics are presented. The cornea is found to increase in stiffness with age and all the characteristics of viscoelastic behavior (creep , stress-relaxation and hysteresis) decrease with age. Similarly, the stiffness of the sclera increases markedly with age although the reported magnitude of stiffening varies significantly from one study to another. This may be related to variations amongst the different techniques that have been utilized. Increased stiffening in the cornea and the sclera with age is strongly associated with the increase in collagen crosslinking that occurs as part of the natural aging process.


Collagen Fibril Central Corneal Thickness Tangent Modulus Lamina Cribrosa Biomechanical Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aghaian E, Choe JE, Lin S, Stamper RL (2004) Central corneal thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a glaucoma clinic. Ophthalmology 111:2211–2219Google Scholar
  2. 2.
    Aghamohammadzadeh H, Newton RH, Meek KM (2004) X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure 12:249–256Google Scholar
  3. 3.
    Alastrue V, Calvo B, Pena E, Doblare M (2006) Biomechanical modeling of refractive corneal surgery. J Biomech Eng 128:150–160Google Scholar
  4. 4.
    Albon J, Purslow PP, Karwatowski WS, Easty DL (2000) Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol 84:318–323Google Scholar
  5. 5.
    Anderson K, El-Sheikh A, Newson T (2004) Application of structural analysis to the mechanical behaviour of the cornea. J R Soc Interface 1:3–15Google Scholar
  6. 6.
    Avetisov ES, Savitskaya NF, Vinetskaya MI, Iomdina EN (1983) A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups. Metab Pediatr Syst Ophthalmol 7:183–188Google Scholar
  7. 7.
    Bailey AJ (1987) Structure, function and aging of the collagens of the eye. Eye Trans Ophthalmol Soc UK 1:175–183Google Scholar
  8. 8.
    Battaglioli JL, Kamm RD (1984) Measurements of the compressive properties of scleral tissue. Invest Ophthalmol Vis Sci 25:59–65Google Scholar
  9. 9.
    Ben-Zvi A, Rodrigues MM, Krachmer JH, Fujikawa LS (1986) Immunohistochemical characterization of extracellular matrix in the developing human cornea. Curr Eye Res 5:105–117Google Scholar
  10. 10.
    Bisplinghoff JA, McNally C, Manoogian SJ, Duma SM (2009) Dynamic material properties of the human sclera. J Biomech 42:1493–1497Google Scholar
  11. 11.
    Boote C, Dennis S, Huang Y, Quantock AJ, Meek KM (2005) Lamellar orientation in human cornea in relation to mechanical properties. J Struct Biol 149:1–6Google Scholar
  12. 12.
    Boote C, Dennis S, Newton RH, Puri H, Meek KM (2003) Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. Invest Ophthalmol Vis Sci 44:2941–2948Google Scholar
  13. 13.
    Boote C, Hayes S, Abahussin M, Meek KM (2006) Mapping collagen organization in the human cornea: left and right eyes are structurally distinct. Invest Ophthalmol Vis Sci 47:901–908Google Scholar
  14. 14.
    Boote C, Hayes S, Young RD, Kamma-Lorger CS, Hocking PM, Elsheikh A, Inglehearn CF, Ali M, Meek KM (2009) Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea. J Struct Biol 166:195–204Google Scholar
  15. 15.
    Boyce BL, Grazier JM, Jones RE, Nguyen TD (2008) Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 29:3896–3904Google Scholar
  16. 16.
    Brown CT, Vural M, Johnson M, Trinkaus-Randell V (1994) Age-related changes of scleral hydration and sulfated glycosaminoglycans. Mech Aging Dev 77:97–107Google Scholar
  17. 17.
    Brubaker RF, Ezekiel S, Chin L, Young L, Johnson SA, Beeler GW (1975) The stress-strain behavior of the corneoscleral envelope of the eye I. Development of a system for making in vivo measurements using optical interferometry. Exp Eye Res 21:37–46Google Scholar
  18. 18.
    Brubaker RF, Johnson SA, Beeler GW (1977) The stress-strain behavior of the corneoscleral envelope of the eye II. In vivo measurements in rhesus monkey eyes. Exp Eye Res 24:425–435Google Scholar
  19. 19.
    Burgoyne CF, Downs JC (2008) Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma 17:318–328Google Scholar
  20. 20.
    Buzard KA (1992) Introduction to biomechanics of the cornea. Refract Corneal Surg 8:127–138Google Scholar
  21. 21.
    Caroline PJ (2001) Contemporary orthokeratology. Cont Lens Anterior Eye 24:41–46Google Scholar
  22. 22.
    Chakravarti S, Zhang G, Chervoneva I, Roberts L, Birk D (2006) Collagen fibril assembly during postnatal development and dysfunctional regulation in the lumican-deficient murine cornea. Dev Dyn 235:2493–2506Google Scholar
  23. 23.
    Chen MJ, Liu YT, Tsai CC, Chen YC, Chou CK, Lee SM (2009) Relationship between central corneal thickness, refractive error, corneal curvature, anterior chamber depth and axial length. J Chin Med Assoc 72:133–137Google Scholar
  24. 24.
    Cheng S, Clarke EC, Bilston LE (2009) The effects of preconditioning strain on measured tissue properties. J Biomech 42:1360–1362Google Scholar
  25. 25.
    Clark JH (1932) A method for measuring elasticity in vivo and results obtained on the eyeball at different intraocular pressures 101:474–481Google Scholar
  26. 26.
    Clark JI (2004) Order and disorder in the transparent media of the eye. Exp Eye Res 78:427–432Google Scholar
  27. 27.
    Conza N (2005) Part 3: tissue preconditioning. Exp Tech 29:43–46Google Scholar
  28. 28.
    Coster D (2001) Cornea. BMJ Publishing Group, LondonGoogle Scholar
  29. 29.
    Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD (2012) Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci 53:1714–1728Google Scholar
  30. 30.
    Curtin BJ (1969) Physiopathologic aspects of scleral stress-strain. Trans Am Ophthalmol Soc 67:417–461Google Scholar
  31. 31.
    Daxer A, Fratzl P (1997) Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest Ophthalmol Vis Sci 38:121–129Google Scholar
  32. 32.
    Daxer A, Misof K, Grabner B, Ettl A, Fratzl P (1998) Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci 39:644–648Google Scholar
  33. 33.
    Doughty MJ, Jonuscheit S (2007) An assessment of regional differences in corneal thickness in normal human eyes, using the Orbscan II or ultrasound pachymetry. Optometry 78:181–190Google Scholar
  34. 34.
    Downs JC, Ensor ME, Bellezza AJ, Thompson HW, Hart RT, Burgoyne CF (2001) Posterior scleral thickness in perfusion-fixed normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 42:3202–3208Google Scholar
  35. 35.
    Downs JC, Suh JKF, Thomas KA, Bellezza AJ, Burgoyne CF, Hart RT (2003) Viscoelastic characterization of peripapillary sclera: material properties by quadrant in rabbit and monkey eyes. J Biomech Eng 125:124–131Google Scholar
  36. 36.
    Downs JC, Suh JK, Thomas KA, Bellezza AJ, Hart RT, Burgoyne CF (2005) Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 46:540–546Google Scholar
  37. 37.
    Drubaix I, Legeais J, Malek-Chehire N, Savoldelli M, Menasche M, Robert L, Renard G, Pouliquen Y (1996) Collagen synthesised in fluorocarbon polymer implant in the rabbit cornea. Exp Eye Res 62:367–376Google Scholar
  38. 38.
    Dubbelman M, Weeber HA, van der Heijde RGL, Völker-Dieben HJ (2002) Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol Scand 80:379–383Google Scholar
  39. 39.
    Dupps WJ Jr (2007) Hysteresis: new mechanospeak for the ophthalmologist. J Cataract Refract Surg 33:1499–1501Google Scholar
  40. 40.
    Eilaghi A, Flanagan JG, Simmons CA, Ethier CR (2010) Effects of scleral stiffness properties on optic nerve head biomechanics. Ann Biomed Eng 38:1586–1592Google Scholar
  41. 41.
    Eilaghi A, Flanagan JG, Tertinegg I, Simmons CA, Wayne Brodland G, Ross Ethier C (2010b) Biaxial mechanical testing of human sclera. J Biomech 43:1696–1701Google Scholar
  42. 42.
    Elsheikh A, Alhasso D, Rama P (2008) Assessment of the epithelium’s contribution to corneal biomechanics. Exp Eye Res 86:445–451Google Scholar
  43. 43.
    Elsheikh A, Anderson K (2005) Comparative study of corneal strip extensometry and inflation tests. J R Soc Interface 2:177–185Google Scholar
  44. 44.
    Elsheikh A, Geraghty B, Alhasso D, Knappett J, Campanelli M, Rama P (2010) Regional variation in the biomechanical properties of the human sclera. Exp Eye Res 90:624–633Google Scholar
  45. 45.
    Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek KM (2010) Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface 7:1475–1485Google Scholar
  46. 46.
    Elsheikh A, Ross S, Alhasso D, Rama P (2009) Numerical study of the effect of corneal layered structure on ocular biomechanics. Curr Eye Res 34:26–35Google Scholar
  47. 47.
    Elsheikh A, Wang D (2007) Numerical modelling of corneal biomechanical behaviour. Comput Methods Biomech Biomed Engin 10:85–95Google Scholar
  48. 48.
    Elsheikh A, Wang D, Brown M, Rama P, Campanelli M, Pye D (2007) Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res 32:11–19Google Scholar
  49. 49.
    Elsheikh A, Wang D, Pye D (2007) Determination of the modulus of elasticity of the human cornea. J Refract Surg 23:808–818Google Scholar
  50. 50.
    Elsheikh A, Wang D, Rama P, Campanelli M, Garway-Heath D (2008) Experimental assessment of human corneal hysteresis. Curr Eye Res 33:205–213Google Scholar
  51. 51.
    Ethier CR, Johnson M, Ruberti J (2004) Ocular biomechanics and biotransport. Annu Invest Ophthalmol Vis Sci 45(12):4378–4387Google Scholar
  52. 52.
    Eysteinsson T, Jonasson F, Sasaki H, Arnarsson A, Sverrisson T, Sasaki K, Stefánsson E (2002) Central corneal thickness, radius of the corneal curvature and intraocular pressure in normal subjects using non-contact techniques: Reykjavik eye study. Acta Ophthalmol Scand 80:11–15Google Scholar
  53. 53.
    Fazio MA, Grytz R, Morris JS, Bruno L, Gardiner SK, Girkin CA, Downs JC (2013) Age-related changes in human peripapillary scleral strain. Biomech Model Mechanobiol 12:1–13Google Scholar
  54. 54.
    Fernandez DC, Niazy AM, Kurtz RM, Djotyan GP, Juhasz T (2006) A finite element model for ultrafast laser-lamellar keratoplasty. Ann Biomed Eng 34:169–183Google Scholar
  55. 55.
    Forrester J, Dick A, McMenamin P, Lee W (1999) The eye: basic sciences in practice. W.B. Saunders, LondonGoogle Scholar
  56. 56.
    Friberg TR, Lace JW (1988) A comparison of the elastic properties of human choroid and sclera. Exp Eye Res 47:429–436Google Scholar
  57. 57.
    Friedenwald JS (1952) The eye. In: Lansing AI (ed) Cowdry’s problems of aging. Williams and Wilkins Company, BaltimoreGoogle Scholar
  58. 58.
    Fullwood NJ, Martin FL, Bentley AJ, Lee JP, Lee SJ (2011) Imaging sclera with hard X-ray microscopy. Micron 42:506–511Google Scholar
  59. 59.
    Geraghty B, Jones SW, Rama P, Akhtar R, Elsheikh A (2012) Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater 16:181–191Google Scholar
  60. 60.
    Girard M, Suh JKF, Hart RT, Burgoyne CF, Downs JC (2007) Effects of storage time on the mechanical properties of rabbit peripapillary sclera after enucleation. Curr Eye Res 32:465–470Google Scholar
  61. 61.
    Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC (2009a) Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 52: 5656–5659Google Scholar
  62. 62.
    Girard MJA, Downs JC, Bottlang M, Burgoyne CF, Suh JKF (2009b) Peripapillary and posterior scleral mechanics—Part II: experimental and inverse finite element characterization. J Biomech Eng 131:051012Google Scholar
  63. 63.
    Girard MJA, Francis Suh JK, Bottlang M, Burgoyne CF, Downs JC (2011) Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci 52:5656–5669Google Scholar
  64. 64.
    Grant CA, Thomson NH, Savage MD, Woon HW, Greig D (2011) Surface characterisation and biomechanical analysis of the sclera by atomic force microscopy. J Mech Behav Biomed Mater 4:535–540Google Scholar
  65. 65.
    Greene PR (1985) Stress-strain behavior for curved exponential strips. Bull Math Biol 47:757–764zbMATHGoogle Scholar
  66. 66.
    Greene PR, McMahon TA (1979) Scleral creep versus temperature and pressure in vitro. Exp Eye Res 29:527–537Google Scholar
  67. 67.
    Haider KM, Mickler C, Oliver D, Moya FJ, Cruz OA, Davitt BV (2008) Age and racial variation in central corneal thickness of preschool and school-aged children. J Pediatr Ophthalmol Strabismus 45:227–233Google Scholar
  68. 68.
    Han M, Giese G, Bille JF (2005) Second harmonic generation imaging of collagen fibrils in cornea and sciera. Opt Express 13:5791–5797Google Scholar
  69. 69.
    Harper CL, Boulton ME, Bennett D, Marcyniuk B, Jarvis-Evans JH, Tullo AB, Ridgway AE (1996) Diurnal variations in human corneal thickness. Br J Ophthalmol 80:1068–1072Google Scholar
  70. 70.
    Hassan AU, Hassan G, Rasool Z, Hassan S (2013) Clinical outcomes of elastin fibre defects. Cytol Histol 1:166Google Scholar
  71. 71.
    He X, Liu J (2009) A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties. Invest Ophthalmol Vis Sci 50:5148–5154Google Scholar
  72. 72.
    Heathcote JG (1994) Collagen and its disorders. In: Garner A, Klintworth GK (eds) Pathobiology of ocular disease: a dynamic approach. Taylor & Francis, New YorkGoogle Scholar
  73. 73.
    Hirano K, Nakamura M, Kobayashi M, Kobayashi K, Hoshino T, Awaya S (1993) Long-spacing collagen in the human corneal stroma. Jpn J Ophthalmol 37:148–155Google Scholar
  74. 74.
    Hjortdal JØ (1996) Regional elastic performance of the human cornea. J Biomech 29:931–942Google Scholar
  75. 75.
    Hogan MJ, Alvarado J (1969) Ultrastructure of deep corneolimbal region. Doc Ophthalmol 26:9Google Scholar
  76. 76.
    Hogan MJ, Zimmerman LE (1962) Ophthalmic pathology. W.B. Saunders, LondonGoogle Scholar
  77. 77.
    Hollman KW, Emelianov SY, Neiss JH, Jotyan G, Spooner GJR, Juhasz T, Kurtz RM, O’Donnell M (2002) Strain imaging of corneal tissue with an ultrasound elasticity microscope. Cornea 21:68–73Google Scholar
  78. 78.
    Hollman KW, Shtein RM, Tripathy S, Kim K (2013) Using an ultrasound elasticity microscope to map three-dimensional strain in a porcine cornea. Ultrasound Med Biol 39:1451–1459Google Scholar
  79. 79.
    Ihanamaki T, Salminen H, Saamanen AM, Pelliniemi LJ, Hartmann DJ, Sandberg-Lall M, Vuorio E (2001) Age-dependent changes in the expression of matrix components in the mouse eye. Exp Eye Res 72:423–431Google Scholar
  80. 80.
    Jayasuriya AC, Ghosh S, Scheinbeim JI, Lubkin V, Bennett G, Kramer P (2003) A study of piezoelectric and mechanical anisotropies of the human cornea. Biosens Bioelectron 18:381–387Google Scholar
  81. 81.
    Jonuscheit S, Doughty MJ, Button NF (2007) On the use of Orbscan II to assess the peripheral corneal thickness in humans: a comparison with ultrasound pachometry measures. Ophthalmic Physiol Opt 27:179–189Google Scholar
  82. 82.
    Jue B, Maurice DM (1986) The mechanical properties of the rabbit and human cornea. J Biomech 19:847–853Google Scholar
  83. 83.
    Kampmeier J, Radt B, Birngruber R, Brinkmann R (2000) Thermal and biomechanical parameters of porcine cornea. Cornea 19:355–363Google Scholar
  84. 84.
    Kanai A, Kaufman HE (1973) Electron microscopic studies of corneal stroma: aging changes of collagen fibers. Ann Ophthalmol 5:285–287(passim)Google Scholar
  85. 85.
    Kaufmann C, Bachmann LM, Robert YC, Thiel MA (2006) Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol 124:1104–1108Google Scholar
  86. 86.
    Keeley FW, Morin JD, Vesely I (1984) Characterization of collagen from normal human sclera. Exp Eye Res 39:533–542Google Scholar
  87. 87.
    Kling S, Remon L, Pérez-Escudero A, Merayo-Lloves J, Marcos S (2010) Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Invest Ophthalmol Vis Sci 51:3961–3968Google Scholar
  88. 88.
    Koga T, Inatani M, Hirata A, Inomata Y, Zako M, Oohira A, Gotoh T, Mori M, Tanihara H (2005) Expression of a chondroitin sulfate proteoglycan, versican (PG-M), during development of rat cornea. Curr Eye Res 30:455–463Google Scholar
  89. 89.
    Kokott W (1938) Über mechanisch-funktionelle Strukturen des Auges. Albrecht v Grafes Arch Ophthalmol 118:424–485Google Scholar
  90. 90.
    Komai Y, Ushiki T (1991) The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32:2244–2258Google Scholar
  91. 91.
    Krag S, Olsen T, Andreassen TT (1997) Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest Ophthalmol Vis Sci 38:357–363Google Scholar
  92. 92.
    Krekeler F (1923) Die Struktur der Sklera in den verschieden Lebensaltern. Arch Augenheilk 93:144–159Google Scholar
  93. 93.
    Lam A, Douthwaite WA (2000) The ageing effect on the central posterior corneal radius. Ophthalmic Physiol Opt 20:63–69Google Scholar
  94. 94.
    Lari DR, Schultz DS, Wang AS, Lee OT, Stewart JM (2012) Scleral mechanics: comparing whole globe inflation and uniaxial testing. Exp Eye Res 94:128–135Google Scholar
  95. 95.
    Lee RE, Davison PF (1981) Collagen composition and turnover in ocular tissues of the rabbit. Exp Eye Res 32:737–745Google Scholar
  96. 96.
    Lee PP, Walt JW, Rosenblatt LC, Siegartel LR, Stern LS (2007) Association between intraocular pressure variation and glaucoma progression: data from a United States chart review. Am J Ophthalmol 144(901–907):e1Google Scholar
  97. 97.
    Lee RE, Davison PF (1984) The collagens of the developing bovine cornea. Exp Eye Res 39:639–652Google Scholar
  98. 98.
    Liu JHK, Kripke DF, Hoffman RE, Twa MD, Loving RT, Rex KM, Gupta N, Weinreb RN (1998) Nocturnal elevation of intraocular pressure in young adults. Invest Ophthalmol Vis Sci 39:2707–2712Google Scholar
  99. 99.
    Liu JHK, Kripke DF, Twa MD, Hoffman RE, Mansberger SL, Rex KM, Girkin CA, Weinreb RN (1999) Twenty-four-hour pattern of intraocular pressure in the aging population. Invest Ophthalmol Vis Sci 40:2912–2917Google Scholar
  100. 100.
    Liu J, Roberts CJ (2005) Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 31:146–155Google Scholar
  101. 101.
    Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31:156–162Google Scholar
  102. 102.
    Malik NS, Moss SJ, Ahmed N, Furth AJ, Wall RS, Meek KM (1992) Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta 1138:222–228Google Scholar
  103. 103.
    Manapuram RK, Aglyamov SR, Monediado FM, Mashiatulla M, Li J, Emelianov SY, Larina KV (2012) In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography. J Biomed Opt 17:100501-1Google Scholar
  104. 104.
    Manschot WA (1978) Senile scleral plaques and senile scleromalacia. Br J Ophthalmol 62:376–380Google Scholar
  105. 105.
    Marcos S, Kling S, Bekesi N, Dorronsoro C (2014) Corneal biomechanical properties from air-puff corneal deformation imagingGoogle Scholar
  106. 106.
    McBrien NA, Cornell LM, Gentle A (2001) Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci 42:2179–2187Google Scholar
  107. 107.
    McBrien NA, Gentle A (2003) Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res 22:307–338Google Scholar
  108. 108.
    Meek KM, Boote C (2004) The organization of collagen in the corneal stroma. Exp Eye Res 78:503–512Google Scholar
  109. 109.
    Meek KM, Fullwood NJ (2001) Corneal and scleral collagens—a microscopist’s perspective. Micron 32:261–272Google Scholar
  110. 110.
    Meek KM (2008) The cornea and scleraGoogle Scholar
  111. 111.
    Muller LJ, Pels E, Schurmans LR, Vrensen GF (2004) A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma. Exp Eye Res 78:493–501Google Scholar
  112. 112.
    Myers KM, Cone FE, Quigley HA, Gelman S, Pease ME, Nguyen TD (2010) The in vitro inflation response of mouse sclera. Exp Eye Res 91:866–875Google Scholar
  113. 113.
    Myers KM, Coudrillier B, Boyce BL, Nguyen TD (2010) The inflation response of the posterior bovine sclera. Acta Biomater 6:4327–4335Google Scholar
  114. 114.
    Nahas A, Bauer M, Roux S, Boccara AC (2013) 3D static elastography at the micrometer scale using full field OCT. Biomed Opt Exp 4:2138–2149Google Scholar
  115. 115.
    Nash IS, Greene PR, Foster CS (1982) Comparison of mechanical properties of keratoconus and normal corneas. Exp Eye Res 35:413–424Google Scholar
  116. 116.
    Nguyen TM, Aubry JF, Touboul D, Bercoff J (2011) & TANTER, M. In vivo evidence of cornea elastic anisotropy, Assessment of shear anisotropy using supersonic shear imaging with rotating arrays, pp 1278–1280Google Scholar
  117. 117.
    Nguyen TM, Aubry JF, Touboul D, Fink M, Gennisson JL, Bercoff J, Tanter M (2012) Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: A pilot study. Invest Ophthalmol Vis Sci 53:5948–5954Google Scholar
  118. 118.
    Norman RE, Flanagan JG, Rausch SMK, Sigal IA, Tertinegg I, Eilaghi A, Portnoy S, Sled JG, Ethier CR (2010) Dimensions of the human sclera: Thickness measurement and regional changes with axial length. Exp Eye Res 90:277–284Google Scholar
  119. 119.
    Nyquist GW (1968) Rheology of the cornea: experimental techniques and results. Exp Eye Res 7:183–184, IN1–IN2, 185–188Google Scholar
  120. 120.
    Olsen T (1986) On the calculation of power from curvature of the cornea. Br J Ophthalmol 70:152–154Google Scholar
  121. 121.
    Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF (1998) Human sclera: thickness and surface area. Am J Ophthalmol 125:237–241Google Scholar
  122. 122.
    Olsen TW, Sanderson S, Feng X, Hubbard WC (2002) Porcine sclera: thickness and surface area. Invest Ophthalmol Vis Sci 43:2529–2532Google Scholar
  123. 123.
    Orssengo GJ, Pye DC (1999) Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bull Math Biol 61:551–572Google Scholar
  124. 124.
    Palko JR, Pan X, Liu J (2011) Dynamic testing of regional viscoelastic behavior of canine sclera. Exp Eye Res 93:825–832Google Scholar
  125. 125.
    Parry DA, Craig AS (1979) Electron microscope evidence for an 80 a unit in collagen fibrils. Nature 282:213–215Google Scholar
  126. 126.
    Phillips JR, McBrien NA (2004) Pressure-induced changes in axial eye length of chick and tree shrew: significance of myofibroblasts in the sclera. Invest Ophthalmol Vis Sci 45:758–763Google Scholar
  127. 127.
    Pierscionek BK, Asejczyk-Widlicka M, Schachar RA (2007) The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Br J Ophthalmol 91:801–803Google Scholar
  128. 128.
    Pinsky PM, van der Heide D, Chernyak D (2005) Computational modeling of mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg 31:136–145Google Scholar
  129. 129.
    Quigley HA, Dorman-Pease ME, Brown AE (1991) Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr Eye Res 10:877–888Google Scholar
  130. 130.
    Rada JA, Achen VR, Penugonda S, Schmidt RW, Mount BA (2000) Proteoglycan composition in the human sclera during growth and aging. Invest Ophthalmol Vis Sci 41:1639–1648Google Scholar
  131. 131.
    Rada JA, Shelton S, Norton TT (2006) The sclera and myopia. Exp Eye Res 82:185–200Google Scholar
  132. 132.
    Rucklidge GJ, Milne G, McGaw BA, Milne E, Robins SP (1992) Turnover rates of different collagen types measured by isotope ratio mass-spectrometry. Biochim Biophys Acta 1156:57–61Google Scholar
  133. 133.
    Scott JE, Orford CR, Hughes EW (1981) Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. Biochem J 195:573–581Google Scholar
  134. 134.
    Sheppard J, Hayes S, Boote C, Votruba M, Meek KM (2010) Changes in corneal collagen architecture during mouse postnatal development. Invest Ophthalmol Vis Sci 51:2936–2942Google Scholar
  135. 135.
    Shimmyo M, Orloff PN (2005) Corneal thickness and axial length. Am J Ophthalmol 139:553–554Google Scholar
  136. 136.
    Shin TJ, Vito RP, Johnson LW, McCarey BE (1997) The distribution of strain in the human cornea. J Biomech 30:497–503Google Scholar
  137. 137.
    Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46:4189–4199Google Scholar
  138. 138.
    Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2004) Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci 45:4378–4387Google Scholar
  139. 139.
    Sjontorf E, Edmund C (1987) In vivo determination of Young’s modulus for the human cornea. Bull Math Biol 49:217–232Google Scholar
  140. 140.
    Smolek M (1988) Elasticity of the bovine sclera measured with real-time holographic interferometry. Am J Optom Physiol Opt 65:653–660Google Scholar
  141. 141.
    Sorsby A, Wilcox K, Ham D (1935) The calcium content of the sclerotic and its variation with age. Br J Ophthalmol 19:327–337Google Scholar
  142. 142.
    Swarbrick HA (2006) Orthokeratology review and update. Clin Exp Optom 89:124–143Google Scholar
  143. 143.
    Tanaka S, Avigad G, Brodsky B, Eikenberry EF (1988) Glycation induces expansion of the molecular packing of collagen. J Mol Biol 203:495–505Google Scholar
  144. 144.
    Tanter M, Touboul D, Gennisson JL, Bercoff J, Fink M (2009) High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans Med Imaging 28:1881–1893Google Scholar
  145. 145.
    Uchio E, Ohno S, Kudoh J, Aoki K, Kisielewicz LT (1999) Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol 83:1106–1111Google Scholar
  146. 146.
    Vannas S, Teir H (1960) Observations on structures and age changes in the human sclera. Acta Ophthlmol (Kbh) 38:268–279Google Scholar
  147. 147.
    Vurgese S, Panda-Jonas S, Jonas JB (2012) Scleral thickness in human eyes. PLoS ONE 7:e29692Google Scholar
  148. 148.
    Wang S, Larin KV (2014) Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Opt Lett 39:41–44Google Scholar
  149. 149.
    Watson PG, Young RD (2004) Scleral structure, organisation and disease. Rev Exp Eye Res 78:609–623Google Scholar
  150. 150.
    Weale RA (1963) The aging eye. Harper & Row, LondonGoogle Scholar
  151. 151.
    Wollensak G, Iomdina E (2008) Crosslinking of scleral collagen in the rabbit using glyceraldehyde. J Cataract Refract Surg 34:651–656Google Scholar
  152. 152.
    Wollensak G, Iomdina E, Dittert DD, Salamatina O, Stoltenburg G (2005) Cross-linking of scleral collagen in the rabbit using riboflavin and UVA. Acta Ophthalmol Scand 83:477–482Google Scholar
  153. 153.
    Wollensak G, Spoerl E, Seiler T (2003) Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg 29:1780–1785Google Scholar
  154. 154.
    Woo SLY, Kobayashi AS, Schlegel WA, Lawrence C (1972) Nonlinear material properties of intact cornea and sclera. Exp Eye Res 14:29–39Google Scholar
  155. 155.
    Yan D, Mcpheeters S, Johnson G, Utzinger U, Vande Geest JP (2011) Microstructural differences in the human posterior sclera as a function of age and race. Invest Ophthalmol Vis Sci 52:821–829Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Brendan Geraghty
    • 1
  • Charles Whitford
    • 1
  • Craig Boote
    • 2
  • Riaz Akhtar
    • 1
  • Ahmed Elsheikh
    • 1
    • 3
    Email author
  1. 1.Centre for Materials and Structures, School of EngineeringUniversity of LiverpoolLiverpoolUK
  2. 2.School of Optometry and Vision ScienceUniversity of CardiffCardiffUK
  3. 3.National Institute for Health Research (NIHR), Biomedical Research CentreMoorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK

Personalised recommendations