Structural Controllability of Networks for Non-interactive Adversarial Vertex Removal

  • Cristina Alcaraz
  • Estefanía Etchevés Miciolino
  • Stephen Wolthusen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8328)

Abstract

The problem of controllability of networks arises in a number of different domains, including in critical infrastructure systems where control must be maintained continuously. Recent work by Liu et al.has renewed interest in the seminal work by Lin on structural controllability, providing a graph-theoretical interpretation. This allows the identification of driver nodes capable of forcing the system into a desired state, which implies an obvious target for attackers wishing to disrupt the network control. Several methods for identifying driver nodes exist, but require undesirable computational complexity. In this paper, we therefore investigate the ability to regain or maintain controllability in the presence of adversaries able to remove vertices and implicit edges of the controllability graph. For this we rely on the Power Dominating Set (PDS) formulation for identifying the control structure and study different attack strategies for multiple network models. As the construction of a PDS for a given graph is not unique, we further investigate different strategies for PDS construction, and provide a simulative evaluation.

Keywords

Structural Controllability Attack Models Complex Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kalman, R.E.: Mathematical description of linear dynamical systems. Journal of the Society of Industrial and Applied Mathematics Control Series A 1, 152–192 (1963)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Lin, C.-T.: Structual Controllability. IEEE Transactions on Automatic Control 19(3), 201–208 (1974)CrossRefMATHGoogle Scholar
  3. 3.
    Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of Complex Networks. Nature 473, 167–173 (2011)CrossRefGoogle Scholar
  4. 4.
    Wang, W.-X., Ni, X., Lai, Y.-C., Grebogi, C.: Optimizing controllability of complex networks by minimum structural perturbations. Physical Review E 85(2), 026115 (2012)Google Scholar
  5. 5.
    Pu, C.-L., Pei, W.-J., Michaelson, A.: Robustness analysis of network controllability. Physica A: Statistical Mechanics and its Applications 391(18), 4420–4425 (2012)CrossRefGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Micali, S., Vazirani, V.V.: An \(O(\sqrt{|V|}|E|)\) Algorithm for Finding Maximum Matching in General Graphs. In: Book, R.V. (ed.) Proceedings of the 21st Annual Symposium on Foundations of Computer Science (FOCS 1980), Syracuse, NY, USA, pp. 17–27. IEEE Press (October 1980)Google Scholar
  8. 8.
    Lovász, L., Plummer, M.D.: Matching Theory. American Mathematical Society, Providence (2009)MATHGoogle Scholar
  9. 9.
    Pósfai, M., Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Effect of Correlations on Network Controllability. Nature Scientific Reports 3(1067), 1–7 (2013)Google Scholar
  10. 10.
    Bollobás, B., Riordan, O.: Robustness and Vulnerability of Scale-Free Random Graphs. Internet Mathematics 1(1), 1–35 (2003)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Sudakov, B., Vu, V.H.: Local Resilience of Graphs. Random Structures & Algorithms 33(4), 409–433 (2008)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Haynes, T.W., Mitchell Hedetniemi, S., Hedetniemi, S.T., Henning, M.A.: Domination in Graphs Applied to Electric Power Networks. SIAM Journal on Discrete Mathematics 15(4), 519–529 (2002)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Feige, U.: A Threshold of ln n for Approximating Set Cover. Journal of the ACM 45(4), 634–652 (1998)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Parameterized Power Domination Complexity. Information Processing Letters 98(4), 145–149 (2006)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Aazami, A., Stilp, K.: Approximation Algorithms and Hardness for Domination with Propagation. SIAM Journal on Discrete Mathematics 23(3), 1382–1399 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Guo, J., Niedermeier, R., Raible, D.: Improved Algorithms and Complexity Results for Power Domination in Graphs. Algorithmica 52(2), 177–202 (2008)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Binkele-Raible, D., Fernau, H.: An Exact Exponential Time Algorithm for Power Dominating Set. Algorithmica 63(1-2), 323–346 (2012)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Pai, K.-J., Chang, J.-M., Wang, Y.-L.: Restricted Power Domination and Fault-Tolerant Power Domination on Grids. Discrete Applied Mathematics 158(10), 1079–1089 (2010)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Atkins, D., Haynes, T.W., Henning, M.A.: Placing Monitoring Devices in Electric Power Networks Modelled by Block Graphs. Ars Combinatorica 79(1) (April 2006)Google Scholar
  20. 20.
    Bollobás, B.: Random Graphs, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 73. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Watts, D.J., Strogatz, S.H.: Collective Dynamics of ‘Small-World’ Networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  22. 22.
    Albert, R., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Reviews of Modern Physics 74(1), 47–97 (2002)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Cohen, R., Havlin, S., Ben Avraham, D.: Structural Properties of Scale-Free Networks. In: Bornholdt, S., Schuster, H.-G. (eds.) Handbook of Graphs and Networks: From the Genome to the Internet, Wiley-VCH, Weinheim (2005)Google Scholar
  24. 24.
    Palmer, C.R., Steffan, J.G.: Generating Network Topologies That Obey Power Laws. In: Proceedings of the 2000 IEEE Global Telecommunications Conference (GLOBECOM 2000), vol. 1, pp. 434–438. IEEE Press, San Francisco (2000)Google Scholar
  25. 25.
    Pagani, G.A., Aiello, M.: The Power Grid as a Complex Network: A Survey. Physica A: Statistical Mechanics and its Applications 392(11), 2688–2700 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Cristina Alcaraz
    • 1
    • 4
  • Estefanía Etchevés Miciolino
    • 2
  • Stephen Wolthusen
    • 3
    • 4
  1. 1.Computer Science DepartmentUniversity of MálagaSpain
  2. 2.Complex Systems & Security LaboratoryUniversitá Campus Bio-Medico di RomaItaly
  3. 3.Norwegian Information Security LaboratoryGjøvik University CollegeNorway
  4. 4.Information Security Group, Department of MathematicsRoyal Holloway, University of LondonEghamUnited Kingdom

Personalised recommendations