In the Dance Studio: An Art and Engineering Exploration of Human Flocking

  • Naomi E. Leonard
  • George F. Young
  • Kelsey Hochgraf
  • Daniel T. Swain
  • Aaron Trippe
  • Willa Chen
  • Katherine Fitch
  • Susan Marshall
Chapter

Abstract

Flock Logic was developed as an art and engineering project to explore how the feedback laws used to model flocking translate when applied by dancers. The artistic goal was to create choreographic tools that leverage multiagent system dynamics with designed feedback and interaction. The engineering goal was to provide insights and design principles for multiagent systems, such as human crowds, animal groups, and robotic networks, by examining what individual dancers do and what emerges at the group level. We describe our methods to create dance and investigate collective motion. We analyze video of an experiment in which dancers moved according to simple rules of cohesion and repulsion with their neighbors. Using the prescribed interaction protocol and tracked trajectories, we estimate the time-varying graph that defines who is responding to whom. We compute status of nodes in the graph and show the emergence of leaders. We discuss results and further directions.

Keywords

Collective motion Dance Choreography Feedback Social interaction Networks Leadership Human groups Animal groups 

References

  1. 1.
    Leonard NE, Marshall S (2010) Flock Logic [Online]. Available: http://www.princeton.edu/~flocklogic
  2. 2.
    Parrish JK, Edelstein-Keshet L (1999) Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284(5411):99–101CrossRefGoogle Scholar
  3. 3.
    Breder JCM (1954) Equations descriptive of fish schools and other animal aggregations. Ecology 35(3):361–370CrossRefGoogle Scholar
  4. 4.
    Couzin ID, Krause J (2003) Self-organization and collective behavior in vertebrates. Adv Study Behav 32:1–75CrossRefGoogle Scholar
  5. 5.
    Sumpter DJT (2010) Collective animal behavior. Princeton University Press, PrincetonMATHGoogle Scholar
  6. 6.
    Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A et al (2008) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Nat Acad Sci 105(4):1232–1237CrossRefGoogle Scholar
  7. 7.
    Young GF, Scardovi L, Cavagna A, Giardina I, Leonard NE (2013) Starling Flock networks manage uncertainty in consensus at low cost. PLoS Comput Biol 9(1):1–7CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hildenbrandt H, Carere C, Hemelrijk CK (2010) Self-organized aerial displays of thousands of starlings: a model. Behav Ecol 21(6):1349–1359CrossRefGoogle Scholar
  9. 9.
    Gueron S, Levin SA, Rubenstein DI (1996) The dynamics of herds: from individuals to aggregations. J Theor Biol 182:85–98CrossRefGoogle Scholar
  10. 10.
    Fischhoff IR, Sundareson SR, Cordingley J, Rubenstein DI (2007) Habitat use and movements of plains zebra (equus burchelli) in response to predation danger from lions. Behav Ecol 18(4):725–729CrossRefGoogle Scholar
  11. 11.
    Leonard NE (2013) Multi-agent system dynamics: bifurcation and behavior of animal groups. In: Proceedings of 9th IFAC symposium on nonlinear control systems, Elsevier, pp 1–11Google Scholar
  12. 12.
    Dyer JRG, Johansson A, Helbing D, Couzin ID, Krause J (2009) Leadership, consensus decision making and collective behaviour in humans. Phil Trans R Soc B 364:781–789CrossRefGoogle Scholar
  13. 13.
    Moussaid M, Perozo N, Garnier S, Helbing D, Theraulaz G (2010) The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4):1–7CrossRefGoogle Scholar
  14. 14.
    Funes P, Orme B, Bonabeau E (2004) Shaping collective behavior: an exploratory design approach. In: Artificial life IX: Proceedings of Ninth International Conference on the simulation and synthesis of artificial life, MIT Press, pp 232–237Google Scholar
  15. 15.
    Silverberg JL, Bierbaum M, Sethna JP, Cohen I (2013) Collective motion of humans in mosh and circle pits at heavy metal concerts. Phys Rev Lett 100(228701):1–5Google Scholar
  16. 16.
    Altenberg L (2000) Emergent movement: group experiments in emergent properties from simple rules. In: Short courses on the mathematics of biological complexity, University of Tennessee [Online]. Available: http://dynamics.org/Altenberg/TALKS/UTK_2000/EmergentMovement.html
  17. 17.
    Clemente K (1990) Playing with performance: the element of the game in experimental dance and theater. J Popular Cult 24:1–10Google Scholar
  18. 18.
    Forsythe W, Palazzi M, Shaw NZ (2009) Synchronous objects [Online]. Available: http://synchronousobjects.osu.edu/
  19. 19.
    Sgorbati S (2005) Emergent improvisation [Online]. Available: http://emergentimprovisation.org/essay.html
  20. 20.
    Hagendoorn I (2008) Emergent patterns in dance improvisation and choreography. Unifying themes in complex systems IV. Springer, Berlin, pp 183–195Google Scholar
  21. 21.
    Carlson K (2011) Exploring creative decision-making in choreographic practice: a phenomenological study of situated cognition. MSc Thesis, Simon Fraser UniversityGoogle Scholar
  22. 22.
    Huepe C, Colasso M, Cádiz RF (2014) Generating music from Flocking dynamics. Controls and Art, Chapter 7. Springer, HeidelburgGoogle Scholar
  23. 23.
    LaViers A, Teague L, Egerstedt M (2014) Syle-based robotic motion in contemporary dance performance. Controls and Art, Chapter 9. Springer, HeidelburgGoogle Scholar
  24. 24.
    Ray Jaideep, Pinar Ali, Seshadhri C (2012) Are we there yet? When to stop a Markov chain while generating random graphs. In: Bonato Anthony, Janssen Jeannette (eds) WAW 2012, vol 7323., LNCSSpringer, Heidelberg, pp 153–164Google Scholar
  25. 25.
    Tsiotras P, Castro L I R (2014) Generation of intricate geometric patterns on plane surface using consensus protocols. Controls and Art, Chapter 6. Springer, HeidelburgGoogle Scholar
  26. 26.
    Leonard NE, Young G, Hochgraf K., Swain D, Trippe A, Chen W, Marshall S (2012) In the dance studio: analysis of human Flocking. In: Proceedings of American control conference on IEEE, pp 4333–4338Google Scholar
  27. 27.
    Pais D, Leonard NE (2010) Pursuit and evasion: evolutionary dynamics and collective motion. In: Proceedings of AIAA guidance, navigation, and control conference on AIAA, pp 1–14Google Scholar
  28. 28.
    Swain DT, Leonard NE (2009) On the trajectories and coordination of steered particles with time-periodic speed profiles. In: Proceedings of American control conference on IEEE, pp. 1286–1291Google Scholar
  29. 29.
    Caicedo-Nunez CH, Leonard NE (2011) Symmetric coverage of dynamic mapping error for mobile sensor networks. In: Proceedings of American control conference on IEEE, pp 4661–4666Google Scholar
  30. 30.
    Chen W, Leonard NE, Marshall S (2010) FlockMaker: simulator for collective motion [Online]. Available: http://dcsl.princeton.edu/dance
  31. 31.
    Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. In: SIGGRAPH ’87 Proceedings of 14th annual conference on computer graphics and interactive techniques on ACM, pp 25–34Google Scholar
  32. 32.
    Swain DT, Couzin ID, Leonard NE (2012) Real-time feedback-controlled robotic fish for behavioral experiments with fish schools. Proc IEEE 100(1):150–163CrossRefGoogle Scholar
  33. 33.
    Swain DT (2011) MADTraC framework source documentation [Online]. Available: https://github.com/leonard-lab/MADTraC
  34. 34.
    Bradski G (2011) OpenCV (Open Computer Vision) Library [Online]. Available: http://opencv.willowgarage.com/wiki/Welcome
  35. 35.
    Chang F, Chen C-J, Lu C-J (2004) A linear-time component-labeling algorithm using contour tracing technique. Comput Vis Image Underst 93(2):206–220CrossRefGoogle Scholar
  36. 36.
    Mohar B (1991) The Laplacian spectrum of graphs. Graph Theory Combinatorics Appl 2:871–898MathSciNetGoogle Scholar
  37. 37.
    Werner ER (1991) Manual of visual fields. Churchill Livingstone, New YorkGoogle Scholar
  38. 38.
    Ren W, Beard R, Atkins E (2005) A survey of consensus problems in multi-agent coordination. In: Proceedings of American control conference on IEEE, pp 1859–1864Google Scholar
  39. 39.
    Pais D, Leonard NE (2013) Adaptive network dynamics and evolution of leadership in collective migration. Physica D [Online]. Available: http://dx.doi.org/10.1016/j.physd.2013.04.014
  40. 40.
    Fitch K, Leonard NE (2013) Information centrality and optimal leader selection in noisy networks. In: Proceedings of IEEE conference on decision and control, IEEEGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Naomi E. Leonard
    • 1
  • George F. Young
    • 1
  • Kelsey Hochgraf
    • 1
  • Daniel T. Swain
    • 1
  • Aaron Trippe
    • 1
  • Willa Chen
    • 1
  • Katherine Fitch
    • 1
  • Susan Marshall
    • 1
  1. 1.Princeton UniversityPrincetonUSA

Personalised recommendations