Declarative Dynamic Programming as an Alternative Realization of Courcelle’s Theorem

  • Bernhard Bliem
  • Reinhard Pichler
  • Stefan Woltran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8246)


Many computationally hard problems become tractable if the graph structure underlying the problem instance exhibits small treewidth. A recent approach to put this idea into practice is based on a declarative interface to specify dynamic programming over tree decompositions, delegating the computation to dedicated solvers. In this paper, we prove that this method can be applied to any problem whose fixed-parameter tractability follows from Courcelle’s Theorem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Practical algorithms for MSO model-checking on tree-decomposable graphs (2013),
  3. 3.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics And Its Applications. Oxford University Press (2006)Google Scholar
  4. 4.
    Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM 49(6), 716–752 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int. J. Found. Comput. Sci. 13(4), 571–586 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Kneis, J., Langer, A., Rossmanith, P.: Courcelle’s theorem – a game-theoretic approach. Discrete Optimization 8(4), 568–594 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Evaluation of an MSO-solver. In: Proc. ALENEX, pp. 55–63. SIAM / Omnipress (2012)Google Scholar
  8. 8.
    Courcelle, B., Durand, I.: Computations by fly-automata beyond monadic second-order logic. CoRR abs/1305.7120 (2013)Google Scholar
  9. 9.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  10. 10.
    Bliem, B., Morak, M., Woltran, S.: D-FLAT: Declarative problem solving using tree decompositions and answer-set programming. TPLP 12(4-5), 445–464 (2012)MathSciNetMATHGoogle Scholar
  11. 11.
    Langer, A., Rossmanith, P., Sikdar, S.: Linear-time algorithms for graphs of bounded rankwidth: A fresh look using game theory - (extended abstract). In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 505–516. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)CrossRefMATHGoogle Scholar
  13. 13.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Comput. 9(3/4), 365–386 (1991)CrossRefGoogle Scholar
  14. 14.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo. Preliminary Draft (2010),
  15. 15.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2012)Google Scholar
  16. 16.
    Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic 130(1-3), 3–31 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gottlob, G., Pichler, R., Wei, F.: Monadic datalog over finite structures of bounded treewidth. ACM Trans. Comput. Log. 12(1) (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Bernhard Bliem
    • 1
  • Reinhard Pichler
    • 1
  • Stefan Woltran
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyAustria

Personalised recommendations