Hardness of r-dominating set on Graphs of Diameter (r + 1)

  • Daniel Lokshtanov
  • Neeldhara Misra
  • Geevarghese Philip
  • M. S. Ramanujan
  • Saket Saurabh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8246)


The dominating set problem has been extensively studied in the realm of parameterized complexity. It is one of the most common sources of reductions while proving the parameterized intractability of problems. In this paper, we look at dominating set and its generalization r-dominating set on graphs of bounded diameter in the realm of parameterized complexity. We show that dominating set remains W[2]-hard on graphs of diameter 2, while r-dominating set remains W[2]-hard on graphs of diameter r + 1. The lower bound on the diameter in our intractability results is the best possible, as r-dominating set is clearly polynomial time solvable on graphs of diameter at most r.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertossi, A.A.: Dominating sets for split and bipartite graphs. Information Processing Letters 19, 37–40 (1984)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ambalath, A.M., Balasundaram, R., Rao H., C., Koppula, V., Misra, N., Philip, G., Ramanujan, M.S.: On the kernelization complexity of colorful motifs. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 14–25. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algorithms 1, 33–47 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52, 866–893 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. The Computer Journal 51, 332–337 (2007)CrossRefGoogle Scholar
  7. 7.
    Dorn, F., Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs. In: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010). LIPIcs, vol. 5, pp. 251–262. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1998)Google Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  10. 10.
    Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and exponential speed-up. SIAM J. Comput. 36, 281–309 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATHGoogle Scholar
  12. 12.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel Dekker Inc., New York (1998)MATHGoogle Scholar
  13. 13.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  14. 14.
    Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52, 203–225 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Daniel Lokshtanov
    • 1
  • Neeldhara Misra
    • 2
  • Geevarghese Philip
    • 3
  • M. S. Ramanujan
    • 4
  • Saket Saurabh
    • 1
    • 4
  1. 1.University of BergenNorway
  2. 2.Indian Institute of ScienceIndia
  3. 3.Max-Planck-Institut für InformatikGermany
  4. 4.Institute of Mathematical SciencesIndia

Personalised recommendations